UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA UNAN – MANAGUA

RECINTO UNIVERSITARIO "RUBÉN DARÍO"

FACULTAD DE CIENCIAS E INGENIERÍA

DEPARTAMENTO DE CONSTRUCCIÓN

TÉCNICO SUPERIOR EN INGENIERÍA CIVÍL CON MENCIÓN EN TOPOGRAFÍA

SEMINARIO DE GRADUACIÓN PARA OPTAR AL TITULO DE TÉCNICO SUPERIOR EN INGENIERÍA CIVIL CON MENCIÓN EN TOPOGRAFÍA

TEMA:

LEVANTAMIENTO TOPOGRAFICO PARA LA CONSTRUCCION DE PARQUE MUNICIPAL EN EL BARRIO "LA CHIRIPA" MUNICIPIO DE JINOTEPE DEPARTAMENTO DE CARAZO.

AUTORA: BR. MIREILLI EDITH GARCIA ORTIZ

TUTOR: Msc. WILBER PEREZ FLORES

AGOSTO 2016

DEDICATORIA.

Dedico este trabajo a Dios, mis padres y mis amistades sinceras.

A mi familia que en todo momento estuvieron apoyándome.

A mi tutor **Ing. Wilber Pérez Flores** quien siempre estuvo dándome palabras de aliento con el cual ha sido posible la presentación de este trabajo.

AGRADECIMIENTO.

A Dios padre quien nos concedió la vida y la sabiduría

Al **Ing. Wilber Pérez** por darnos su tiempo y conocimientos a lo largo de este tiempo, por enseñarnos con amor y empeño, sobre todo su paciencia y excelente críticas, aportaciones y sugerencias en todo el proceso de redacción.

A mi madre **Janeth Ortiz** y mi padre **Oscar García** por brindarme todo su apoyo incondicional en todos estos años de esfuerzo y aprendizaje.

A mis compañeros que siempre nos dieron esa mano amiga siempre que la necesitábamos.

LEVANTAMIENTO TOPOGRÁFICO PARA LA CONSTRUCCIÓN DE PARQUE MUNICIPAL EN EL BARRIO "LA CHIRIPA" DEL MUNICIPIO DE JINOTEPE DEPARTAMENTO DE CARAZO.

Contenido

I. I	INTRODUCCIÓN	5				
II. I	RESUMEN EJECUTIVO	6				
III.	ANTECEDENTES	7				
IV.	JUSTIFICACIÓN	8				
V.	OBJETIVOS:	9				
VI.	DESARROLLO	. 10				
6.1	Localización	. 10				
6.2	Fases de levantamiento.	. 11				
6.2.1	1 Levantamiento planimétrico	. 11				
6.2.2	2 Levantamiento altimétrico	. 13				
6.3	Cálculos altimétricos	. 16				
6.4	Pasos para la confección de planos	. 17				
6.4.1	1 Crear proyecto	. 17				
6.4.2	2 Importación de puntos	. 23				
6.4.3	B Derrotero	. 28				
6.4.4	1 Creacion de curvas de nivel	. 31				
6.4.5	Secciones Topográficas	. 36				
VII.	Conclusiones	. 41				
VIII.	VIII. Bibliografía42					
IX.Al	NEXOS	. 43				

I. INTRODUCCIÓN.

En los proyectos destinados a realizarse por la alcaldía municipal de Jinotepe se incluye uno en el cual se plasma su desarrollo en el siguiente documento.

Este proyecto consiste en la realización de un parque municipal recreativo en el cual la topografía es una de las fases más importantes para su realización, esta fase consiste en realizar un levantamiento topográfico planimétrico y altimétrico por el cual se ha denominado a este documento como LEVANTAMIENTO TOPOGRAFICO PARA LA CONSTRUCCION DE PARQUE MUNICIPAL EN EL BARRIO "LA CHIRIPA" DEL MUNICIPIO DE JINOTEPE DEPARTAMENTO DE CARAZO.

Se pretende con este levantamiento obtener los diferentes detalles del terreno para poder dar una propuesta de rasante a través de los datos y sus respectivos cálculos.

El parque municipal del barrio la chiripa pretende servir como centro de diversión para todas las familias jinotepinas, constituido previo a su ejecución en una cancha multiusos, área de juegos infantiles (tobogán) sube y baja, columpios y constara con un área de gimnasio, así también con áreas verdes y andenes.

En consecuencia su posible ejecución traería beneficios a los comerciantes ambulantes, realce al lugar y el barrio la chiripa se beneficiara por los alcances de este proyecto mejorando su accesibilidad así como su drenaje pluvial.

Financiamiento y costo del por: Alcaldía Municipal de Jinotepe

II. RESUMEN EJECUTIVO

El presente proyecto consiste en presentar como se procesó la información obtenidas en el levantamiento topográfico.

En primer lugar se describió el lugar, la visita de campo que se realizó previo al levantamiento, los equipos utilizados que fueron brindados por la Alcaldía de Jinotepe, luego se describió como se hizo el levantamiento altimétrico, los detalles levantados, los cálculos de los puntos levantados y la verificación de puntos en la parte de planimetría.

A continuación como se hizo el dibujo en el programa asignado, se da detalladamente el proceso que se usó en cada paso, en crear el proyecto, importar puntos, crear la poligonal, importar los puntos de las curvas, crear las curvas hasta llegar hacer las secciones topográficas para demostrar cómo se comporta de manera natural el relieve del terreno.

Una vez interpretados los planos y cumpliendo el objetivo del trabajo se redactó de manera general las conclusiones.

III. ANTECEDENTES

Al carecer de un proyecto topográfico que determine la posibilidad de efectuar la construcción de un parque municipal en el barrio "La Chiripa" del municipio de Jinotepe, fue necesario indagar acerca del terreno, así como, si este es privado, público, si se encontraba en disputa o en un conflicto jurídico, como resultad lo descrito en lo siguiente.

- El terreno es privado y corresponde al señor Ramón Arévalo González quien llevaba 30 años en poseer la legalidad.
- El dueño estuvo dispuesto a vender, siendo esta una repuesta positiva para seguir avanzando en la ya ansiado obra que de ser aceptada atraería consigo un lugar recreativo para dicho barrio.
- El barrio "La Chiripa" aún no cuenta con un parque municipal y el personal a cargo apoyo la propuesta para la construcción y corroboraron con información sin ninguna retribución, esta área debía ser comprendida de 4 manzanas.

Cabe resaltar que los dirigentes emplearon un proceso investigativo que consistía en definir el valor monetario de una obra civil en el lugar, la cual fue descartada por falta de presupuesto.

Esto dejo paso para proponer un nuevo estudio topógrafo en **Abril de 2016** siendo el punto inicial de la obra civil, aceptada y con un presupuesto definido. Los datos obtenidos a través del estudio a efectuar serán remitidos al personal correspondiente para su crítica y valoración desde su punto de vista.

IV. JUSTIFICACIÓN

Dado que el barrio la chiripa no cuenta con un parque municipal, por tal razón motivo a las autoridades municipales a la construcción de dicho parque.

La importancia del estudio topográfico es para ver si es parte de la factibilidad del proyecto.

La creación del parque es para la recreación sana de la población cercana al mismo haciendo de este barrio un lugar recreativo y turístico para los demás pobladores.

V. OBJETIVOS:

1. Objetivo general.

Elaborar un estudio topográfico en el terreno destinado para la construcción del parque municipal del barrio la chiripa de Jinotepe departamento de Carazo.

2. Objetivos específicos.

- 1. Realizar el levantamiento planimétrico y altimétrico de un terreno de aproximadamente 4 Mz.
- Procesar y detallar los pasos a seguir en el programa AUTOCAD CIVL
 3D LAND 2009 para realizar los planos del terreno.
- 3. Representar los datos recopilados del levantamiento mediante los dibujos topográficos.

VI. DESARROLLO

El barrio la chiripa está ubicado a 3km al sur este de la alcaldía de municipal de Jinotepe, desde el km 48 carretera a Nandaime, 850 metros al este sobre la calle (adoquinada) que conduce a dulce nombre, 420 metros al norte sobre el camino (revestido con material selecto). Con las coordenadas 11° 51'27.49"N 86°12'05.59"W con una elevación 584m. En este barrio es donde se realiza dicho levantamiento para la construcción del parque.

6.1 Localización.

Ilustración 1. Barrio La Chiripa. Ubicación del proyecto. Fuente. Creación propia

La ciudad de Jinotepe está ubicada en la zona central de la región del <u>pacífico</u>, al <u>Sur</u> de la capital <u>Managua</u>, cerca de la cadena de <u>volcanes</u> de Nicaragua Lat/Lon actual: (11.849795146722796, -86.19446441531181)

Ubicación de la ciudad de Jinotepe, departamento de Carazo.

6.2 Fases de levantamiento.

Al realizar este proyecto Levantamiento topográfico para la construcción de parque municipal en el barrio la chiripa del municipio de Jinotepe departamento Carazo se dividió en varias etapas, las cuales consisten en un levantamiento planimétrico y en un levantamiento altimétrico.

6.2.1 Levantamiento planimétrico.

Uno de los levantamientos que se hicieron fue el levantamiento planimétrico, puede definirse planimetría como parte de la topografía dedicada al estudio de los procedimientos y los métodos que se ponen en marcha para lograr representar a escala los detalles de un terreno sobre una superficie plana. Lo que hace la planimetría es prescindir del relieve y la altitud para lograr una representación e dirección horizontal.

En este caso no se hizo levantamiento de poligonal debido a que dicha propiedad ya estaba en el registro del catastro municipal, lo que si se hizo fue corroborar la información que presentaba el plano que nos brindó el propietario del terreno don Ramón Arévalo González, haciendo las mediciones con la cinta y se verifico que estaban correctas, la poligonal del terreno consta de 25 lados cada una con sus distancias y rumbos.

Con los datos verificados se obtuvieron los siguientes datos correspondientes a la poligonal reflejados en la tabla 1.

PUNTO	DISTANCIA	Х	Υ
1	21.11	1892.41	759.9113
2	8.24	1904.493	742.6024
3	19.52	1910.375	736.8394
4	12.08	1924.757	723.6403
5	68.18	1934.307	716.2355
6	37.86	1982.392	667.9035
7	10.74	2006.135	638.4193
8	17.36	2011.8	629.2987
9	25.40	2019.369	613.6764
10	28.22	2029.265	590.2806
11	132.43	2043.566	565.952
12	32.50	1930.26	497.4004
13	71.93	1903.403	479.0918
14	16.02	1849.818	431.1017
15	30.94	1833.932	433.1614
16	31.80	1816.544	458.7554
17	42.30	1813.162	490.3787
18	23.05	1783.377	520.4076
19	20.11	1790.772	542.2348
20	15.16	1784.127	561.2185
21	49.02	1790.182	575.1174
22	31.74	1794.769	623.9271
23	38.79	1786.733	654.6285
24	6.60	1766.757	687.8755
25	148.20	1761.08	691.2373

Tabla 1. Tabla de la poligonal con sus puntos, distancias y coordenadas. Creación Propia.

Luego de hacer la verificación de distancias se empezó la otra limpieza para empezar a hacer el levantamiento topográfico altimétrico.

6.2.2 Levantamiento altimétrico

La **altimetría** es el conjunto de trabajo que suministran los elementos para determinar la altura o diferencias de elevaciones entre puntos del terreno con el propósito de obtener la representación de los accidentes o configuración del mismo. (Manual **de topografía- Altimetría, Ing. Sergio Navarro Hudiel).**

Con el concepto de altimetría se dio paso a realizar el método de las cuadriculas, sin antes poner, resaltar y nombrar los BM (banco maestro) con el objetivo de amarrarse a él para calcular la cota del punto indicado, luego se utilizó el método de la cuadricula esto se hizo con el fin de conseguir con más exactitud las curvas de nivel y por consiguiente el relieve natural del terreno para plasmarlo en el dibujo topográfico.

El método de la cuadricula consiste en realizar cuadros superficiales en el terreno de manera en que vayan a la distancia propuesta hasta abarcar todo el terreno en el que se hará el levantamiento altimétrico(dibujo y geometría descriptiva II, Ing. Sergio Navarro HudieI) en este caso la cuadricula se hizo de 10 metros por 10 metros (10*10) apreciando con más claridad la topografía del lugar, se le nombro a cada vértice con las letras del abecedario como por ejemplo: A0, A10, A20...... hasta llegar a la A150 y así sucesivamente con cada una de las letras culminando con la letra Z150.

Haciendo este método se conseguía con más facilidad y precisión el trazado de las curvas de nivel. Las **Curvas de Nivel** se denominan curvas de nivel a las líneas que marcadas sobre el terreno desarrollan una trayectoria que es horizontal. Por lo tanto podemos definir que una línea de nivel representa la intersección de una superficie de nivel con el terreno. En un plano las curvas de nivel se dibujan para representar intervalos de altura que son equidistantes sobre un plano de referencia. **(Dibujo y geometría descriptiva II, Ing. Sergio Navarro Hudiel.)**

Una vez teniendo la cuadricula realiza con la ayuda del teodolito DGT 10 CST/ Berger propiedad de la alcaldía municipal de Jinotepe se empezó el levantamiento.

El levantamiento iniciaba a partir de las 8 de la mañana hasta concluir a las 5 de la tarde, se llegaba al terreno por medio de un jeep de uso de la alcaldía, se llevaban los siguientes equipos:

- ➤ Teodolito mecánico (DGT 10- CST berger)
- Nivel (South)
- Dos trípodes de aluminio
- Dos estadías
- > 3 cintas
- Dos mazos
- Tres machetes
- 2 botes de pintura en aerosol

El objetivo de la nivelación topográfica es conocer los desniveles entre puntos vecinos a partir de punto de referencia con cota (altura con respecto a un plano de referencia por debajo la tierra). Conocida o dada en forma arbitraria.

Para esto se utiliza los siguientes instrumentos.

- Una cinta métrica
- Estadía
- Trípode (la base para el nivel topográfico)
- Nivel topográfico: con el cual se hacen lecturas de diferentes significado (atrás, adelante, intermedia)
 SOUTH

La nivelación es una operación fundamental tanto para poder confeccionar un proyecto como lograr replantar el mismo

Ya estando en el sitio nos dirigimos a un lugar en donde se pudieran apreciar los primeros puntos, encontrando el punto exacto se plantaba el nivel, con la ayuda del trípode, la comprobación y ajuste del nivel consiste básicamente en tres aspectos.

- 1. El eje vertical del aparato debe ser verdaderamente vertical, o sea el eje vertical del plato debe ser perpendicular al aparato.
- 2. El hilo horizontal del retículo debe ser verdaderamente horizontal.
- 3. La línea de vista debe ser horizontal cuando el aparato este nivelado.

Una vez plantado y ajustado el nivel se utilizó la nivelación compuesta que esta no es más que la nivelación simple con la única diferencia que el aparato se plantara más de una vez y por consiguiente la altura de instrumento será diferente cada vez que se cambie. Este tipo de nivelación se realiza cuando los terrenos son bastantes accidentados y exceden visuales a 200 metros en otras palabras la nivelación compuesta es una serie de nivelaciones simples amarradas entre sí por puntos de cambio o de liga del aparato.

Se empezó a leer la estadía en cada vértice de la cuadricula, a simple vista se notaba que habían muchos accidentes en el terreno, para mayor referencia se iban haciendo BM, aproximadamente se hicieron 18 en todo el terreno.

DEPARTAMENTO DE CARAZO

6.3 Cálculos altimétricos

Habiendo conocido las lecturas de los vértices de nuestra cuadricula se

procedió al cálculos de las cotas, como no hay un BM geodésico se asumió la

cota del BM-O como 100, se colocaron aproximadamente 15 BM.

Para calcular la cota de cada uno de los BM y de los puntos de la cuadricula se

hacen a través de un simple cálculo matemático, conociendo la cota de inicio o

cota del BM1 que es 100, se sumó la altura de atrás con la cota obteniendo la

altura del instrumento, luego con el valor de la altura del instrumento se

encontraba la cota de los demás puntos restándole la vista de frente.

100+VA= AI

COTA= AI-VF

Dónde:

VA: vista al atrás

VF: vista al frente

AI: altura del instrumento

100: cota asumida.

Dado que el levantamiento se realizó con un nivel SOUTH solo se obtuvieron

las coordenadas z, para poder dibujar las curvas de nivel en el programa

AUTOCAD CIVIL 3D LAND que se considera más propicio o de mejor manejo

se necesitan las coordenadas x,y,z y nosotros solo contamos con las z. para en

este caso se hizo la poligonal con las coordenadas brindadas en los planos que

nos fueron entregados en el programa AUTOCAD, dibujando la cuadricula

sobre la poligonal se obtuvieron las coordenadas que necesitamos.

6.4 Pasos para la confección de planos

6.4.1 Crear proyecto

Para iniciar a dibujar en el programa AUTOCAD CIVIL 3D LAND 2009, lo primero que se hace es pasar en una hoja excel los puntos que utilizaremos para hacer nuestro dibujo, con la unica diferencia que lo pondremos en un formato csv (delimitado por coma) ya que el programa reconoce ese tipo de formato.

Abrimos el programa AUTOCAD CIVIL 3D LAND 2009 se nos presenta la siguiente pantalla.

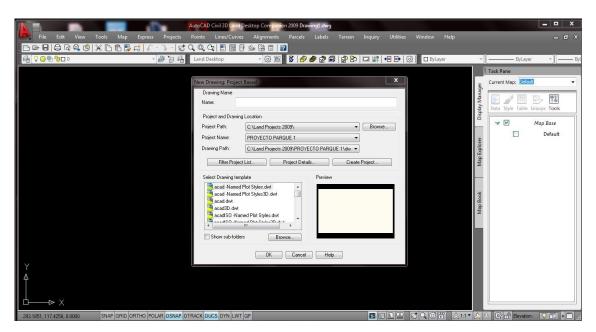


Ilustración 2.Creacion de proyecto en el programa Autocad Civil 3D land 2009. Fuente: Creación Propia.

En donde nos pide abrir un archivo guardado o bien crear un nuevo proyecto, en este caso creamos el proyecto en create Project, nos pide poner el nombre del proyecto, aquí se le puso el nombre de PROYECTO PARQUE 2.

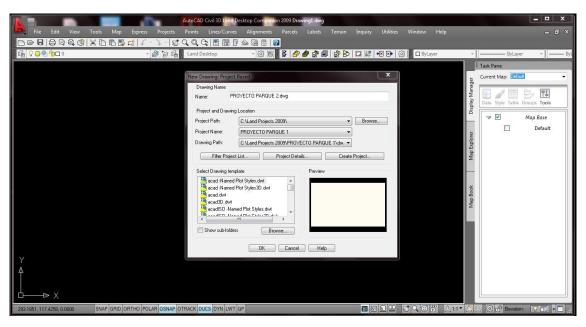


Ilustración 3. Creación de proyecto en el programa Autocad Civil 3D land 2009. Fuente: Creación Propia.

Dar click en create Project y se nos arroja otra ventana donde configuramos el proyecto, en esa ventana nos volver a poner el nombre del proyecto, el sistema de medicion, la escala que usaremos.

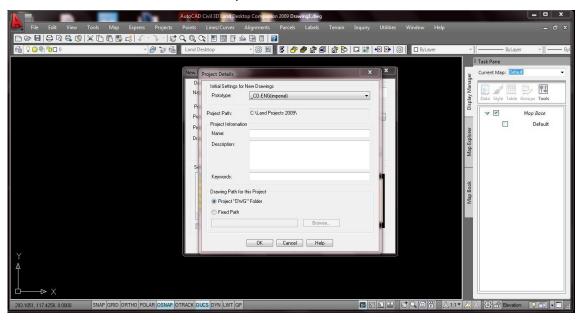


Ilustración 4. Configuración para crear proyecto nuevo. Fuente: Creación Propia.

Aquí modificamos. En load settings damos next, en units le damos click donde dice meters se nos arroja otra ventana y damos en aceptar. En scale Donde dice horizontal de damos 1 al igual que en la vertical ya que no sabemos a que escala se va a plotear el dibujo luego finish.

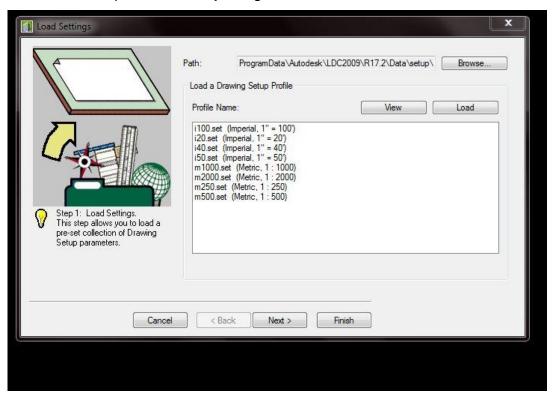


Ilustración 5. Configuración para crear proyecto nuevo. Fuente: Creación Propia.

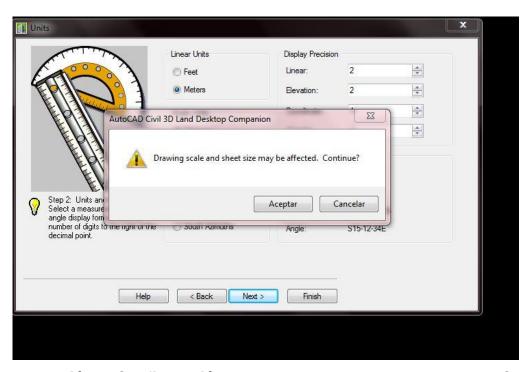


Ilustración 6. Configuración para crear proyecto nuevo. Fuente: Creación Propia.

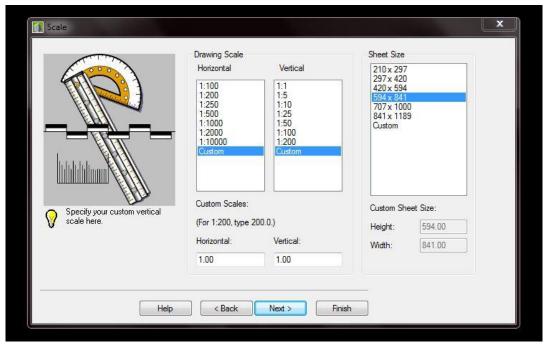


Ilustración 7. Configuración para crear proyecto nuevo. Fuente: Creación Propia.

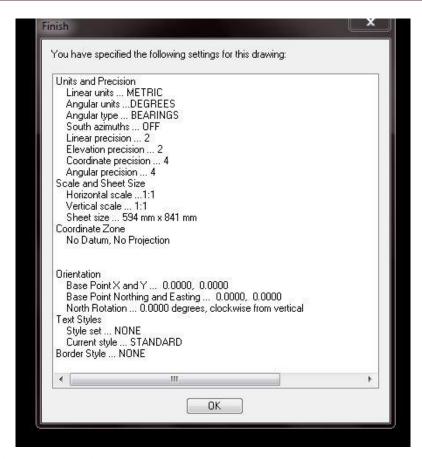


Ilustración 8. Creación de proyecto en el programa Autocad Civil 3D land 2009. Fuente: Creación Propia.

Creamos layers o capas las cuales usaremos como por ejemplo:

- ✓ Poligonal
- ✓ Los puntos de las curvas
- ✓ El derrotero
- ✓ Las curvas

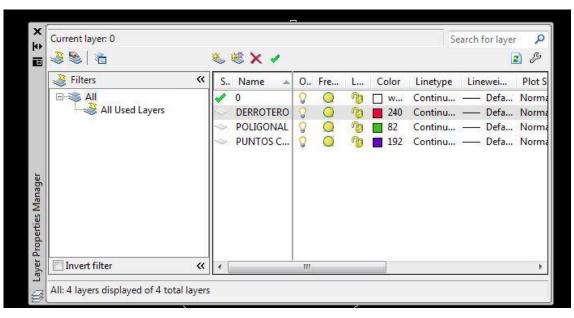


Ilustración 9. Creación de capas o Layers. Fuente: Creación Propia.

Luego en el desplegable points... points settings para elegir el estilo de texto y las marcas con las que saldran nuestros puntos.

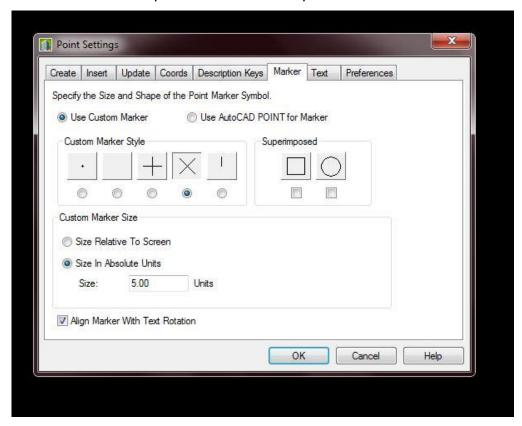


Ilustración 10. Estilos de marcas para los puntos de la poligonal. Fuente: Creación Propia.

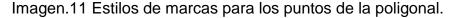


Ilustración 11. Tipo de texto y color para los puntos de la poligonal. Fuente: Creación propia.

Ya una vez configurado esto se importan los puntos pero antes se tiene que elegir el formato .

6.4.2 Importación de puntos.

Para esto seleccionar el desplegable points.....import/export points.....format manager....add.....seleccione user point file....o.k....

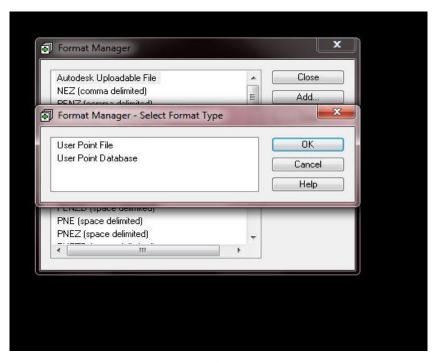


Ilustración 12. Configuración para importar los puntos. Fuente: Creación Propia.

Se nos arroja la siguiente ventana en la cual configuraremos lo siguiente.

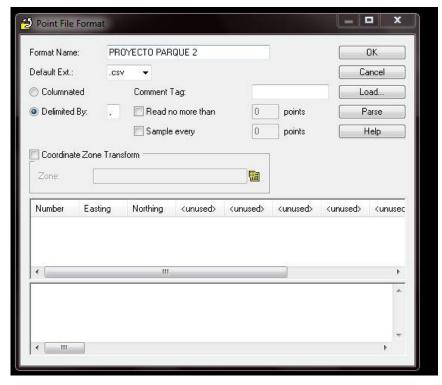


Ilustración 13. Configuración de puntos a importar. Fuente: Creación propia.

En formato name: se le puso PROYECTO PARQUE 2

Default ext: csv, delimato por coma y le ponemos la coma (,)

En la casilla unused, ponemos punto, este y norte. Que fue asi a como esta levantada la poligonal.

En la parte derecha damos click en load que es donde se cargaran los puntos.

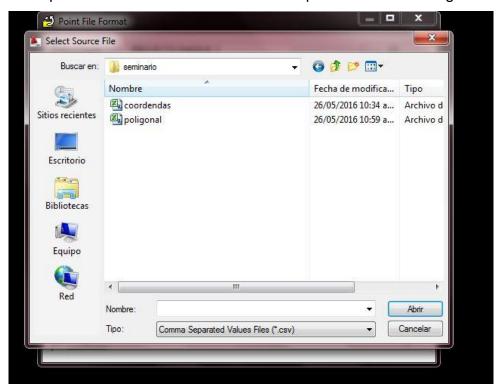


Ilustración 14. Selección de archivos de donde estan los puntos. Fuente: Creación Propia

Elegimos el archiv.. ok, luego **parse** y se cargaran en la parte de arriba.

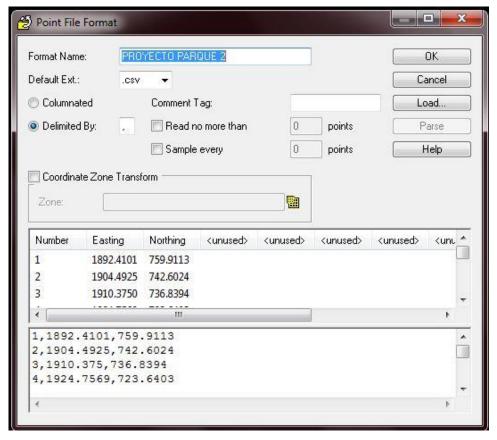


Ilustración 15. Puntos Cargados. Fuente: Creación Propia.

ok.

click en desplegable points....import/export point....import points....

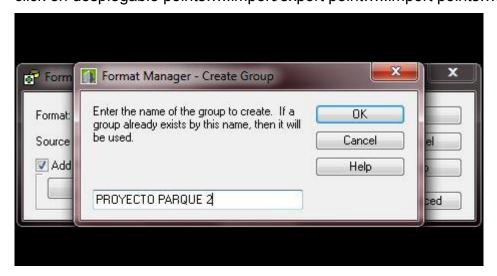


Ilustración 16. Nombre del Proyecto. Fuente: Creación Propia.

En esta ventana nos dice que elijamos el archivo que creamos en el comando anterior, damos click en la esponja verde y ponemos el nombre del formato PROYECTO PARQUE 2, ok.. ok

Ya importados los puntos a la pantalla nos da asi.

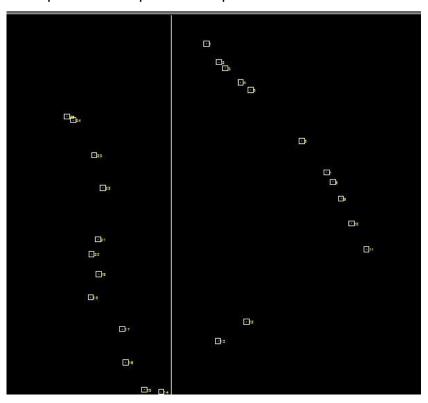


Ilustración 17. Puntos de la poligonal ya importados en la pantalla. Fuente: Creación Propia.

para unir la poligonal con lineas damos en desplegable lines / curves.....by point # range...... y en la línea de comandos digitamos 1-25,1 para cerrar la poligonal. (Imagen.18)

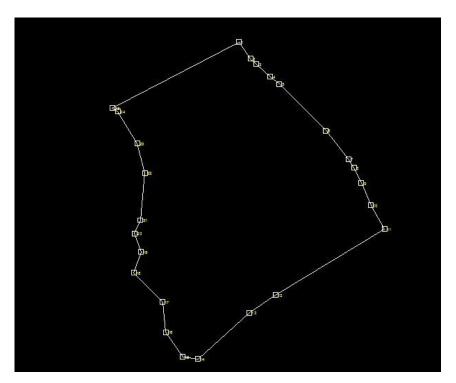


Ilustración 18. Unión de puntos de la poligonal. Fuente: Creación Propia

Activamos la capa o layers de poligonal.

6.4.3 Derrotero

Crear el derrotero de la poligonal para esto se crea un layers llamado TAG, se da click en desplegable labels.....edit tag styles....tag es un identificador; este absorve los datos de las líneas.

Dar click a cada una de las líneas y nos tiran el número de línea.

El cuadro derrotero se genera a través de los TAG, se configura la tabla de derrotero en desplegable labels..add tables.. lines tables.

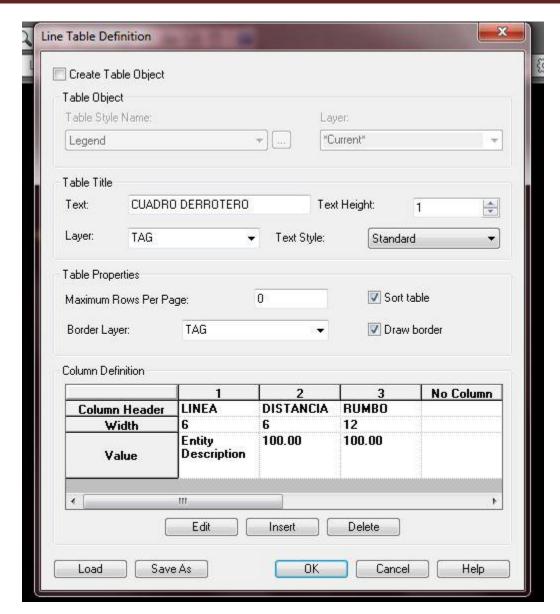


Ilustración 19. Creación del Cuadro de derrotero. Fuente: Creación Propia.

Aquí en table title.. text; cuadro derrotero

Layers: TAG

En la column definition nos dice que pongamos como queremos nuestro

cuadro. En este caso pondremos LINEA, DISTANCIA RUMBO.

Ya configurado esto le damos en save As.

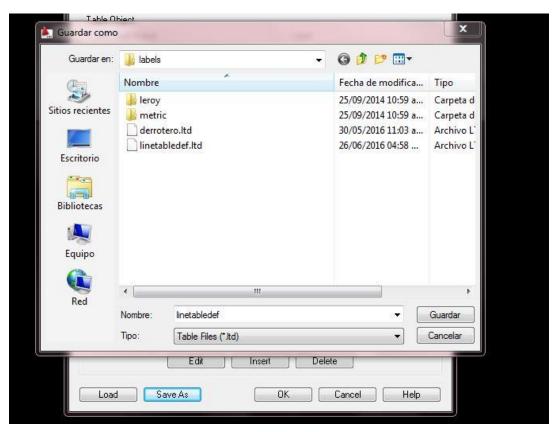


Ilustración 20. Guardar la configuración del cuadro de derrotero. Fuente: Creación Propia.

Ok.. ok. Damos click en el lugar donde queremos que se nos genere nuestro cuadro.

Ilustración 21. Cuadro Derrotero. Fuente: Creación Propia.

6.4.4 Creacion de curvas de nivel

Para crear las curvas de nivel, nos dirijimos en desplegable:

points.....import / export points....format manager....de la lista, seleccionamos el que secreó anteriormente y hacemos click en copy....cambiamos el nombre al formato PROYECTO PARQUE 2 CURVAS, Doble click en la unused al lado de la northing y seleccionamos elevation...o.k., luego load y buscamos el archivo.....parse.....o.k.....close.

Antes de impotar los puntos activamos la capa PUNTOS CURVAS.....points.....import / export points....import points.....seleccionamos el formato PROYECTO PARQUE 2 CURVAS....click en add points to point group.....seleccionamos la esponja y le ponemos el nombre de PROYECTO PARQUE CURVAS 2, OK OK...

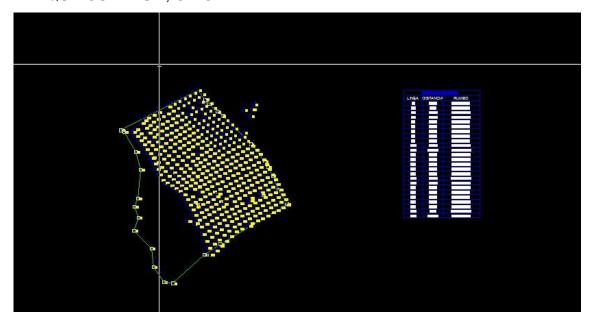


Ilustración 22. Exportación de Puntos de la Cuadricula. Fuente: Creación Propia.

Ya despues de tener los puntos de las curvas se crea una superficies, con esta superficie se crean las curvas de nivel. Damos click en despelgrble terrain,... terrain model explorer. Click derecho en la carpeta terrain y luego en create new surface......el creará la surface 1, hacemos click en el

Signo + a la par de terrain, luego click derecho en surface 1, luego en rename y cambie el nombre de la superficie...curvas de nivel.

Abrimos la carpeta de curvas de nivel, en points group click derecho, add point group, se nos despliega una ventana donde elegimos el archivo de PROYECTO PARQUE 2 CURVAS. Ok

A continuación haga click derecho en contour....luego add contour data....ok....enter....enter....enter.

Haga click derecho en curvas de nivel.....luego build....y obtendrá la siguiente pantalla....

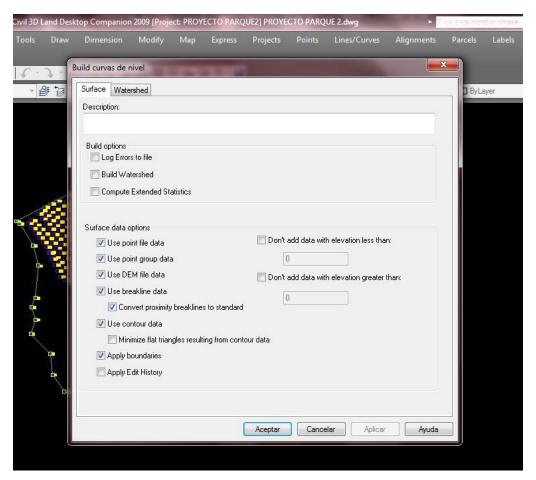


Ilustración 23. Creación para la Creación de la tridimalla. Fuente Creación Propia.

Desactivar la casilla use point file data y activamos la casilla minimize flat triangles resulting from contour data.....aplicar....aceptar...

luego creamos la triangulacion(fig.23) para crear las curvas de nivel click en el desplegable terrain.....luego en edit surface.....luego en import 3d lines...enter

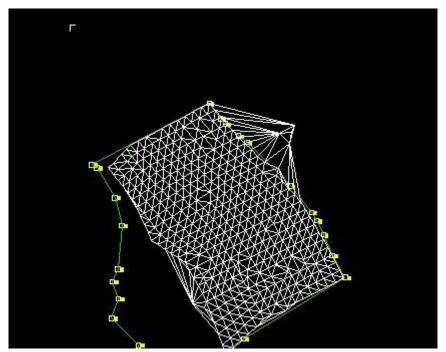


Ilustración 24. Creación de tridimalla o triangulación. Fuente: Creación Propia.

A continuación se procede a generar las curvas de nivel, seleccionamos el desplegable TERRAIN.....CREATE CONTOURS.....O.K....ENTER.

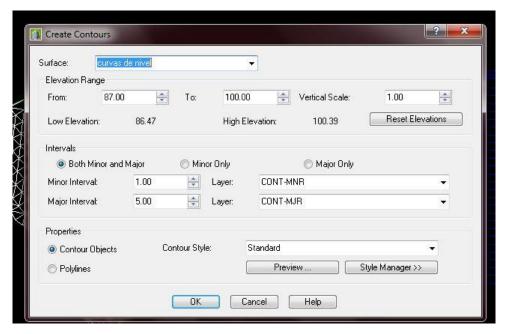


Ilustración 25. Configuración para generar curvas de Nivel. Fuente: Creación Propia.

Dar ok y se nos generan las curvas de nivel, aquí se crean dos capas, las curvas mayor y menor, le modificamos el color en layer.

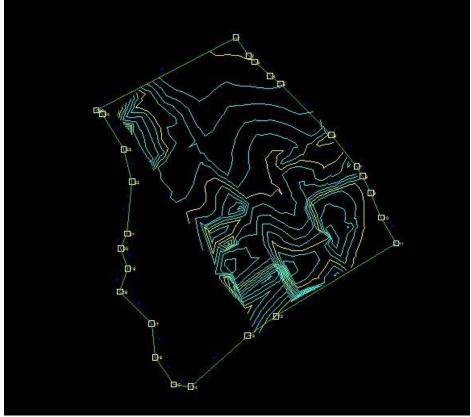


Ilustración 26. Curvas de Nivel generadas. Fuente: Creación Propia.

Para modificar las curvas nos vamos al desplegable terrain.....contour style manager se nos genera una ventana en la cual modificamos según nuestra conveniencia.

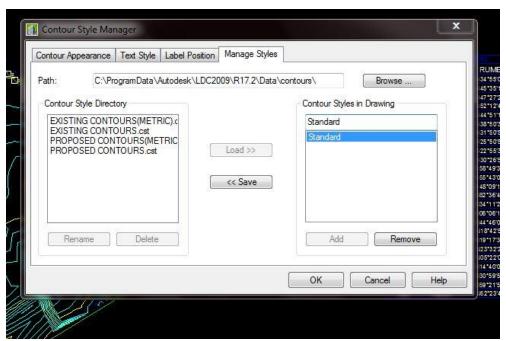


Ilustración 27. Configuración de estilo de las Curvas de Nivel. Fuente: Creación Propia.

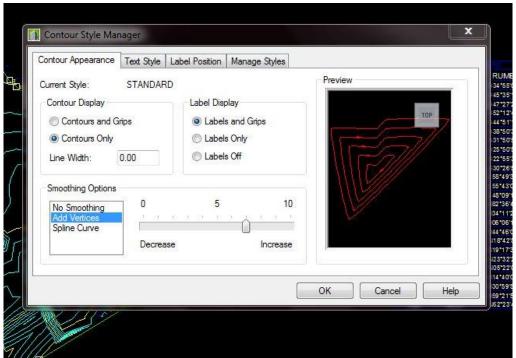


Ilustración 28. configuracion de estilo de las Curvas de Nivel. Fuente: Creación Propia.



Ilustración 29. Configuración de estilo de las Curvas de Nivel. Fuente: Creación Propia.

6.4.5 Secciones Topográficas.

En esta parte se hizo lo que se conoce como seccion topografica, en esta imagen se refleja una seccion ya creada.

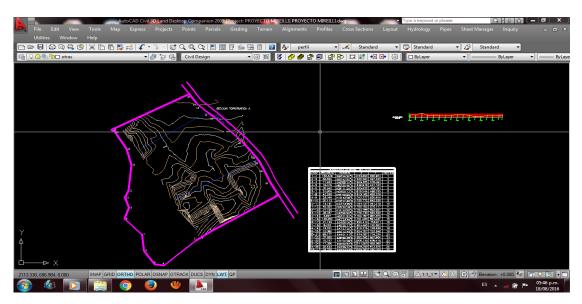


Ilustración 30. Sección topográfica A. Fuente: Creación Propia.

Lo que se hace primero es trazar una linea en el lugar donde se quiere ver el terreno natural, luego se va al desplegable alignments seleccionamos define from objects, se selecciona la linea ya creada damos enter y se arroja un mensaje en el cual pide poner el nombre del alineamiento, enter.

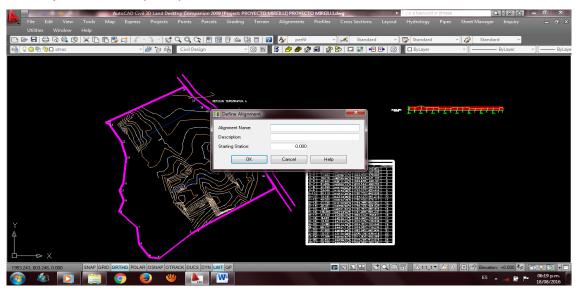


Ilustración 31. Creación de sección topográfica. Fuente: Creación Propia.

Click en desplegable profiles, selecciona profiles settings, selecciona values, se arroja un mensaje en el cual se modifican las casillas de la siguiente manera.

Tangent labels: 10.000 Vertical curve

labels:10.000

Vertical grid lines:10.000

Passing eye height: 1.070 Passing object

height:1.300

Stopping eye height: 1.070 Stopping Objetct

height:1.150

Headight Height: 0.600 Headight

angle(deg):1.000

Existing:2 finish:3

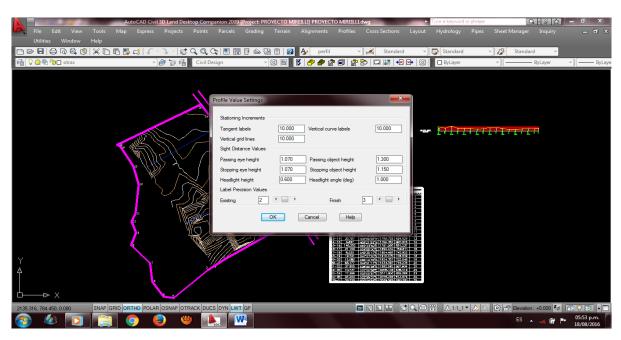


Ilustración 32. Configuración para crear Sección Topográfica. Fuente: Creación Propia.

Ya una vez configurado lo que se arrojó en el mensaje, se da click en el mismo desplegable profiles seleccionar Existing Ground seleccionar Sample From Surface, se arroja un mensaje en el cual solo se da click en ok, doble enter.

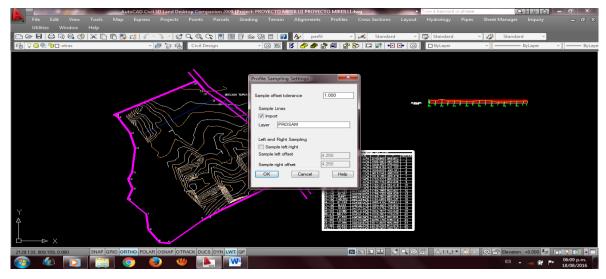


Ilustración 33. . Configuración de secciones Topográficas. Fuente: Creación Propia.

Luego en el mismo desplegable profiles seleccionar Create profile seleccionar Full Profile, se arroja una ventana donde se reflejan los detalles de la sección topográfica.

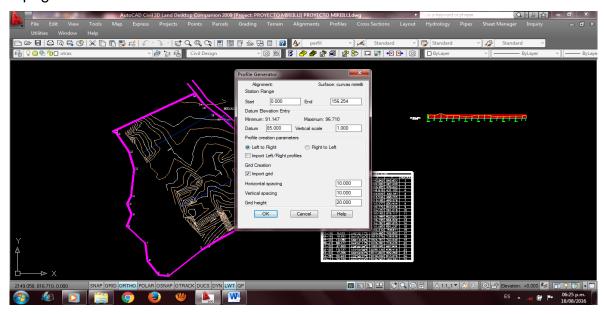


Ilustración 34 Configuración de secciones Topográficas. Fuente: Creación Propia.

En la imagen. (configuracion de Seccion topografica) se configura de siguiente manera:

En dependencia de la cota menor se pone el valor del datum, en este caso la cota menor es 91.147 se le pone 89, escala siempre 1, selecciona Import grid, donde dice Horizontal Spacing: 10, Vertical spacing: 1, Grid Height aquí se le

Pone la diferencia que hay entre el datum y la cota mayor en este caso es 8, ok, luego pica en el lugar donde se desea colocar la sección, enter.

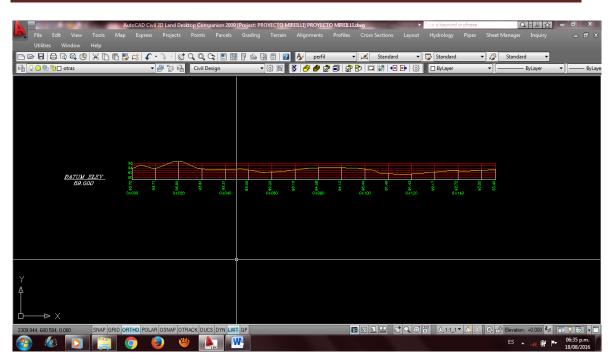


Ilustración 35. Sección topográfica creada. Fuente: Creación Propia.

Para demostrar mejor cómo se comporta el terreno natural, se hacen 4 secciones Topográficas 2 a cada lado.

VII. Conclusiones.

Una vez ya hecho el levantamiento topográfico altimétrico y verificado el levantamiento planimétrico con cada uno de los procesos debidos, se procesó la información obtenida en el campo para pasarla al programa utilizado AUTOCAD CIVIL 3D LAND 2009 en el cual se dieron los siguientes resultados.

El terreno levantado cuenta con un área de 52,375.483 metros² en el cual se hará dicho parque, cuenta con un terreno un tanto regular según las secciones topográficas hechas, las cuales se pueden decir que el proyecto se puede realizar sin hacer tanto trabajo de corte y relleno.

VIII. Bibliografía.

- ✓ Ing. Alberto Astasio Reyes -- 2004 Manejo del programa LAND DESKTOP
- ✓ Ing. Sergio Junior Navarro Hudiel 2008 Altimetría
- ✓ Ing. Sergio Junior Navarro Hudiel 2008 Planimetría
- ✓ <u>www.google Maps.com</u>

IX.ANEXOS

Hoja de tablas

Esta tabla es el resultado del cálculo de cotas en la cuadricula.

Tabla 2. Tabla de lectura y cotas. Fuente: Creación Propia.

	Vista	Altura del	Vista al	
Estación	atrás	equipo	frente	Cota
BM - 1	0.938	100.938		100
A0			0.681	100.257
A10			0.6	100.338
A20			0.642	100.296
A30			1.032	99.906
A40			1.238	99.7
A50			1.127	99.811
В0			0.655	100.283
B10			0.825	100.113
B20			0.947	99.991
B30			1.101	99.837
B40			1.107	99.831
B50			1.098	99.84
C0			0.775	100.163
C10			0.995	99.943
C20			1.245	99.693
C30			1.374	99.564
C40			1.344	99.594
C50			1.369	99.569
BM - 2			1.144	99.794
D0			0.993	99.945

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
D10			1.115	99.823
D20			1.477	99.461
D30			1.701	99.237
D40			1.763	99.175
D50			1.633	99.305
E0			1.191	99.747
E10			1.381	99.557
E20			1.742	99.196
E30			2.09	98.848
E40			2.249	98.689
E50			2.145	98.793
F0			1.555	99.383
F10			1.674	99.264
F20			1.985	98.953
F30			2.114	98.824
F40			2.596	98.342
F50			2.66	98.278
G0			1.84	99.098
G10			1.995	98.943
G20			2.299	98.639
G30			2.656	98.282
G40			2.9	98.038
G50			3.09	97.848
BM - 3	0.61	99.678	1.87	99.068
H0			0.849	98.829
H10			1.187	98.491
H20			1.546	98.132
H30			1931	97.747

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
H40			2.14	97.538
H50			2.246	97.432
10			1.102	98.576
I10			1.48	98.198
I20			1.96	97.718
I30			2.346	97.332
I40			2.616	97.062
I 50			2.774	96.904
J0			1.31	98.368
J10			1.713	97.965
J20			2.274	97.404
J30			2.76	96.918
J40			2.97	96.708
J50			3.51	96.168
J0 - K0			3.682	95.996
K0			1.831	97.847
K10			1.913	97.765
K20			2.599	97.079
K30			3.175	96.503
K40			3.681	95.997
K50			3.974	95.704
BM - 4	1.381	98.31	2.749	96.929
L0			0.887	97.423
L10			0.951	97.359
L20			1.467	96.843
L30			2.16	96.15
L40			2.728	95.582
L50			3.061	95.249

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
MO			1.385	96.925
M10			1.255	97.055
M20			1.646	96.664
M30			2.475	95.835
M40			3.234	95.076
M50			3.579	94.731
BM - 3	0.03	99.098		99.068
N0	1.08	97.428	2.75	96.348
N10			0.8	96.628
N20			1.1	96.328
N30			1.9	95.528
N40			2.7	94.728
N50			3.24	94.188
O0			1.783	95.645
O10			1.445	95.983
O20			1.579	95.849
O30			2.39	95.038
O40			3.305	94.123
O50			3.8	93.628
P0	1.34	96.238	2.53	94.898
P10			0.96	95.278
P20			0.995	95.243
P30			1.93	94.308
P40			2.92	93.318
P50			3.06	93.178
Q0			3.45	92.788
Q10			1.915	94.323
Q20			1.92	94.318

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
Q30			1.685	94.553
Q40			2.56	93.678
Q50			3.45	92.788
R0			2.395	93.843
R10			2.86	93.378
R20			2.635	93.603
R30			3.52	92.718
R40			4.2	92.038
R50			3.5	92.738
BM - 5	0.225	93.863	2.6	93.638
BM - 6	0.75	91.353	3.26	90.603
S0			0.932	90.421
S10			1.7	89.653
S20			2.34	89.013
S30			2.98	88.373
S40			3.08	88.273
S50	2.18	91.003	2.53	88.823
T0			0.625	90.378
T10			1.575	89.428
T20			2.427	88.576
T30			2.89	88.113
T40			3.215	87.788
T50			2.67	88.333
BM -6	0.57	91.173		90.603
U0			0.445	90.728
U10			1.43	89.743
U20			2.678	88.495
U30			3.42	87.753

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
U40			3.88	87.293
U50			3.74	87.433
V0			0.285	90.888
V10			0.97	90.203
V20			1.96	89.213
V30			2.99	88.183
V40			4.2	86.973
V50			4.545	86.628
W0			0.405	90.768
W10			0.645	90.528
W20			1.423	89.75
W30			2.56	88.613
W40			3.9	87.273
W50			4.7	86.473
BM - 6	0.813	91.416		90.603
X0			0.78	90.636
X10			0.643	90.773
X20			1.002	90.414
X30			1.809	89.607
X40			2.793	88.623
X50			4.22	87.196
Y0			1.095	90.321
Y10			0.88	90.536
Y20			0.786	90.63
Y30			1.016	90.4
Y40			1.685	89.731
Y50			2.878	88.538
BM – 6	0.79	91.393		90.603

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
Z0			1.1	90.293
Z10			0.932	90.461
Z20			0.68	90.713
Z30			0.719	90.674
Z40			0.928	90.465
Z50			1.689	89.704
BM - 2	0.787	100.581		99.794
A60			0.751	99.83
A70			0.815	99.766
A80			1.32	99.261
A90			2.834	97.747
BM - 2	0.84	100.634		99.794
A100			4.433	96.201
B60			0.798	99.836
B70			0.919	99.715
B80			1.676	98.958
B90			3.1	97.534
BM - 2	0.388	100.182		99.794
B100			4.755	95.427
C60			0.574	99.608
C70			0.825	99.357
C80			1.427	98.755
C90			2.425	97.757
C100			4.273	95.909
D60			0.915	99.267
D70			1.176	99.006
D80			1.946	98.236
D90			3.11	97.072

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
D100			4.44	95.742
BM - 2	0.335	100.129		99.794
E60			1.216	98.913
E70			1.196	98.933
E80			1.964	98.165
E90			3.096	97.033
E100			4.505	95.624
F60			1.698	98.431
F70			1.533	98.596
F80			1.707	98.422
F90			2.696	97.433
F100			3.796	96.333
G60			2.105	98.024
G70			1.904	98.225
G80			1.805	98.324
G90			2.295	97.834
G100			3.436	96.693
H60			2.6	97.529
H70			2.36	97.769
H80			2.172	97.957
H90			2.172	97.957
H100			3.08	97.049
160			3.05	97.079
I70	1.673	99.002	2.8	97.329
180			1.349	97.653
190			1.125	97.877
I100			1.66	97.342
J60			2.49	96.512

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
J70			2.122	96.88
J80			1.755	97.247
J90			1.378	97.624
J100			1.375	97.627
K60			3.13	95.872
K70			2.83	96.172
K80			2.31	96.692
K90			1.71	97.292
K100			1.267	97.735
BM - 7	0.843	98.08	1.765	97.237
L60			2.75	95.33
L70			2.23	95.85
L80			1.785	96.295
L90			1.37	96.71
L100			0.89	97.19
M60			3.145	94.935
M70			2.57	95.51
M80			2.1	95.98
M90			1.765	96.315
M100			1.483	96.597
N60	2.635	97.165	3.55	94.53
N70			1.87	95.295
N80			1.48	95.685
N90			1.443	95.722
N100			1.195	95.97
O60			3.09	94.075
O70			2.22	94.945
O80			1.485	95.68

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
O90			1.81	95.355
O100			1.88	95.285
BM - 8	0.94	95.765	2.34	94.825
P60			1.84	93.925
P70			0.73	95.035
P80			0.58	95.185
P90			1.17	94.595
P100			1.21	94.555
Q60			1.98	93.785
Q70			0.785	94.98
Q80			1.115	94.65
Q90			2.015	93.75
Q100			2.189	93.576
R60			1.865	93.9
R70			1.33	94.435
R80			1.57	94.195
R90			2.845	92.92
R100			3.36	92.405
S60			2.03	93.735
S70			1.74	94.025
S80			2.21	93.555
S90			3.87	91.895
S100			4.55	91.215
BM - 9	0.53	94.365	1.93	93.835
T60			1.345	93.02
T70			0.84	93.525
T80			1.505	92.86
T90			3.11	91.255

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
T100			4.23	90.135
U60			2.55	91.815
U70			1.85	92.515
U80			2.11	92.255
U90			3.69	90.675
U100			4.86	89.505
V60	1	91.11	4.255	90.11
V70			0.298	90.812
V80			0.23	90.88
V90			1.395	89.715
V100			2.78	88.33
W60			1.79	89.32
W70			2.119	88.991
W80			2.5	88.61
W90			3.035	88.075
W100			3.47	87.64
X60			1.61	89.5
X70			2.127	88.983
X80			2.645	88.465
X90			3.045	88.065
X100			3.34	87.77
Y60			0.35	90.76
Y70			1.07	90.04
Y80			1.835	89.275
Y90			2.19	88.92
Y100	3.875	92.905	2.08	89.03
Z60			0.674	92.231
Z70			1.237	91.668

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
Z80			1.78	91.125
Z90			1.875	91.03
Z100			1.68	91.225
BM - 2	0.17	99.964		99.794
BM - 10	0.234	98.833	1.365	98.599
A110	0.05	94.223	4.66	94.173
A120			1.97	92.253
A130	2.5	92.203	4.52	89.703
A140			4.01	88.193
BM - 11	4.5	95.724	0.979	91.224
B110			0.371	95.353
B120			0.38	95.344
B130			2.29	93.434
B140			4.18	91.544
BM - 11	2.185	93.409		91.224
B150			4.61	88.799
BM - 11	4.77	95.994		91.224
C110			0.18	95.814
C120			2.398	93.596
C130			4.275	91.719
BM - 11	0.47	91.694		91.224
C140			4.14	87.554
BM - 11	4.7	95.924		91.224
D110			0.025	95.899
D120			2.24	93.684
D130	1.74	93.729	3.935	91.989
D140			3.06	90.669
BM – 12	4.52	96.379	1.87	91.859

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
E110			0.54	95.839
E120			2.25	94.129
E130	1.355	93.894	3.84	92.539
E140			2.875	91.019
E150			4.62	89.274
BM - 12	4.53	96.389		91.859
F110			0.065	96.324
F120			1.139	95.25
F130			3.42	92.969
F140	1.03	92.694	4.725	91.664
F150			2.585	90.109
BM - 12	4.44	96.299		91.859
G110			0.02	96.279
G120			0.91	95.389
G130			2.845	93.454
G140	0.42	92.219	4.5	91.799
G150			1.71	90.509
G160			3.24	88.979
H110			0.875	96.983
H120			0.92	96.938
H130			1.345	96.513
H140			1.89	95.968
H150			2.67	95.188
I110			1.38	96.478
l120			1.045	96.813
I130			0.933	96.925
I140			1.344	96.514
I150	2.18	97.913	2.125	95.733

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
J110			2.065	95.848
J120			1.57	96.343
J130			1.194	96.719
J140			1.47	96.443
J150			2.53	95.383
K110			2.67	95.243
K120			2.22	95.693
K130			1.63	96.283
K140			1.55	96.363
K150			2.075	95.838
L110			2.975	94.938
L120			3	94.913
L130			2.285	95.628
L140			1.95	95.963
L150			2.03	95883
BM - 14	0.63	96.518	2.025	95.888
M110			2.55	93.968
M120			2.13	94.388
M130			1.195	95.323
M140			0.885	95.633
M150			1.045	95.473
N110			3.545	92.973
N120			2.88	93.638
N130			1.88	94.638
N140			1.64	94.878
N150			2.05	94.468
O110			4.1	92.418
O120			3.905	92.613

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
O130			2.61	93.908
O140			2.4	94.118
O150	1.075	94.698	2.895	93.623
P110			4.03	90.668
P120			3.27	91.428
P130			2.024	92.674
P140			1.63	93.068
P150			1.84	92.858
BM - 14	2.235	98.123		95.888
Q110			3.4	94.723
Q120			2.965	95.158
Q130			1.854	96.269
Q140			1.33	96.793
Q150			1.36	96.763
R110			4.33	93.793
R120			4.425	93.698
R130			3.575	94.548
R140			3.635	94.488
R150			3.58	94.543
BM - 14	0.195	96.083		95.888
S110			3.1	92.983
S120			3.455	92.628
S130			3.544	92.539
S140			3.698	92.385
S150			3.875	92.208
T110			3.815	92.268
T120			3.295	92.788
T130	2.46	93.963	4.58	91.503

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
T140			2.94	91.023
T150			3.48	90.483
U110			1.64	92.323
U120			1.96	92.003
U130			2.345	91.618
U140			2.74	91.223
U150			3.12	90.843
V110			0.37	93.593
V120			0.435	93.528
V130			0.54	93.423
V140			0.74	93.223
V150			1.12	92.843
BM - 14	4.91	100.798		95.888
W110			1.96	98.838
W120			1.675	99.123
W130			1.83	98.968
W140			2.06	98.738
W150			2.52	98.278
BM - 15	0.68	98.153	3.325	97.473
X110			1.665	96.488
X120			2.036	96.117
X130			2.42	95.733
X140			2.875	95.278
X150			3.665	94.488
Y110			0.128	98.025
Y120			0.215	97.938
Y130			0.436	97.717
Y140			0.834	97.319

Estación	Vista	Altura del	Vista al	Cota
	atrás	equipo	frente	
Y150			1.646	96.507
BM - 15	4.662	102.135		97.473
Z110			1.742	100.393
Z120			1.9	100.235
Z130			2.11	100.025
Z140			2.631	99.504
Z150			3.461	98.674

La siguiente tabla X, Y, Z que representan la cuadricula.

Tabla 3. Tabla de coordenadas de la Poligonal. Fuente: Creación Propia.

PUNTO	X	Y	Z
A00	1892.41	759.9113	100.257
A10	1883.594	755.2096	100.338
A20	1874.778	750.5079	100.296
A30	1865.961	745.8062	99.906
A40	1857.145	741.1046	99.7
A50	1848.329	736.4029	99.811
B00	1898.863	752.2983	100.283
B10	1890.033	747.6131	100.113
B20	1881.202	742.928	99.991
B30	1872.372	738.2428	99.837
B40	1863.542	733.5577	99.831
B50	1854.712	728.8725	99.84
C00	1905.315	744.6853	100.163
C10	1896.471	740.0167	99.943
C20	1987.627	735.3481	99.693
C30	1878.783	730.6795	99.564

PUNTO	X	Y	Z
C40	1969.939	726.0108	99.594
C50	1861.095	721.3422	99.569
D00	1911.768	737.0723	99.945
D10	1902.91	732.4202	99.823
D20	1894.052	727.7682	99.461
D30	1885.199	723.1161	99.237
D40	1876.336	718.464	99.175
D50	1867.478	713.8119	99.305
E00	1918.22	729.4593	99.747
E10	1909.348	724.8238	99.557
E20	1900.477	720.1882	99.196
E30	1981.605	715.5527	98.848
E40	1882.733	710.9171	98.689
E50	1873.862	706.2816	98.793
F00	1924.673	721.8464	99.383
F10	1915.787	717.2273	99.264
F20	1906.902	712.6083	98.953
F30	1898.016	707.9893	98.824
F40	1889.13	703.3703	98.342
F50	1880.245	698.7512	98.278
G00	1931.873	714.9504	99.098
G10	1922.997	710.3373	98.943
G20	1914.121	705.7243	98.639
G30	1905.245	701.1112	98.282
G40	1896.369	696.4981	98.038
G50	1887.493	691.885	97.848
H00	1939.073	708.0545	98.829
H10	1930.207	703.4474	98.491
H20	1921.341	698.8402	98.132

PUNTO	X	Y	Z
H30	1912474	694.233	97.747
H40	1903.608	689.6259	97.538
H50	1894.742	685.0187	97.432
100	1946273	701.1586	98.576
I10	1937.417	696.5574	98.198
I20	1928.56	691.9561	97.718
I30	1919.703	687.3549	97.332
140	1910.847	682.7537	97.062
I 50	1901.99	678.1525	96.904
J00	1953.474	694.2627	98.368
J10	1944.627	689.6774	97.965
J20	1935.78	685.0721	97.404
J30	1926.933	680.4768	96.918
J40	1918.086	675.8815	96.708
J50	1909.239	671.2862	96.168
K00	1969.674	687.3667	97.847
K10	1951.836	682.7774	97.765
K20	1942.999	678.188	97.079
K30	1934.162	673.5987	96.503
K40	1925.324	669.0093	95.997
K50	1916.487	664.4199	95.704
L00	1967.376	679.9801	97.423
L10	1958.545	675.3854	97.359
L20	1949.715	670.7908	96.843
L30	1940.884	666.1961	96.15
L40	1932.053	661.0614	95.582
L50	1923.222	657.0067	95.249
M00	1974.079	672.5935	96.925
M10	1965.254	667.9935	97.055

PUNTO	X	Y	Z
M20	1956.43	663.3935	96.664
M30	1947.606	658.7935	95.835
M40	1938.782	654.1935	95.076
M50	1929.958	649.5935	94.731
N00	1980.781	665.2969	94.155
N10	1971.963	660.6016	94.624
N20	1963.146	655.9962	95.488
N30	1954.328	651.3909	96.296
N40	1945.511	646.7856	96.556
N50	1936.693	642.1802	96.326
O00	1987.484	657.8203	95.645
O10	1978.672	653.2096	95.983
O20	1969.861	648.599	95.849
O30	1961.05	643.9883	95.038
O40	1952.239	639.3777	94.123
O50	1943.428	634.767	93.628
P00	1994.186	650.4337	94.898
P10	1985.382	645.8177	95.278
P20	1976.577	641.2017	95.243
P30	1967.773	636.5857	94.308
P40	1958.968	631.9697	93.318
P50	1950.164	627.3538	93.178
Q00	1999.245	641.9116	92.788
Q10	1990.419	637.311	94.323
Q20	1981.594	632.7104	94.318
Q30	1972.768	628.1098	94.553
Q40	1963.942	625.5093	93.678
Q50	1955.117	618.9087	92.788
R00	2004.304	633.3895	93.843

PUNTO	X	Y	Z
R10	1995.457	628.8043	93.378
R20	1986.61	624.2191	93.603
R30	1977.763	619.6339	92.718
R40	1968.917	615.0488	92.038
R50	1960.07	610.4636	92.738
S00	2009.363	624.8674	90.421
S10	2000.495	620.2976	89.653
S20	1991.627	615.7278	89.013
S30	1982.759	611.1581	88.373
S40	1973.891	606.5883	88.273
S50	1965.023	602.0185	88.823
T00	2014.422	616.3453	90.378
T10	2005.533	611.7909	89.428
T20	1996.644	607.2365	88.576
T30	1987.754	602.6822	88.113
T40	1978.865	598.1278	87.788
T50	1969.976	593.5734	88.333
U00	2019.481	607.8232	90.728
U10	2010.571	603.2842	89.743
U20	2001.66	598.7453	88.495
U30	1992.75	594.2063	87.753
U40	1983.839	589.6673	87.293
U50	1974.929	585.1283	87.433
V00	2023.884	599.292	90.888
V10	2014.997	594.7271	90.203
V20	2006.11	590.1621	89.213
V30	1997.3	585.6369	88.183
V40	1998.336	581.0322	86.973
V50	1979.449	576.4672	86.628

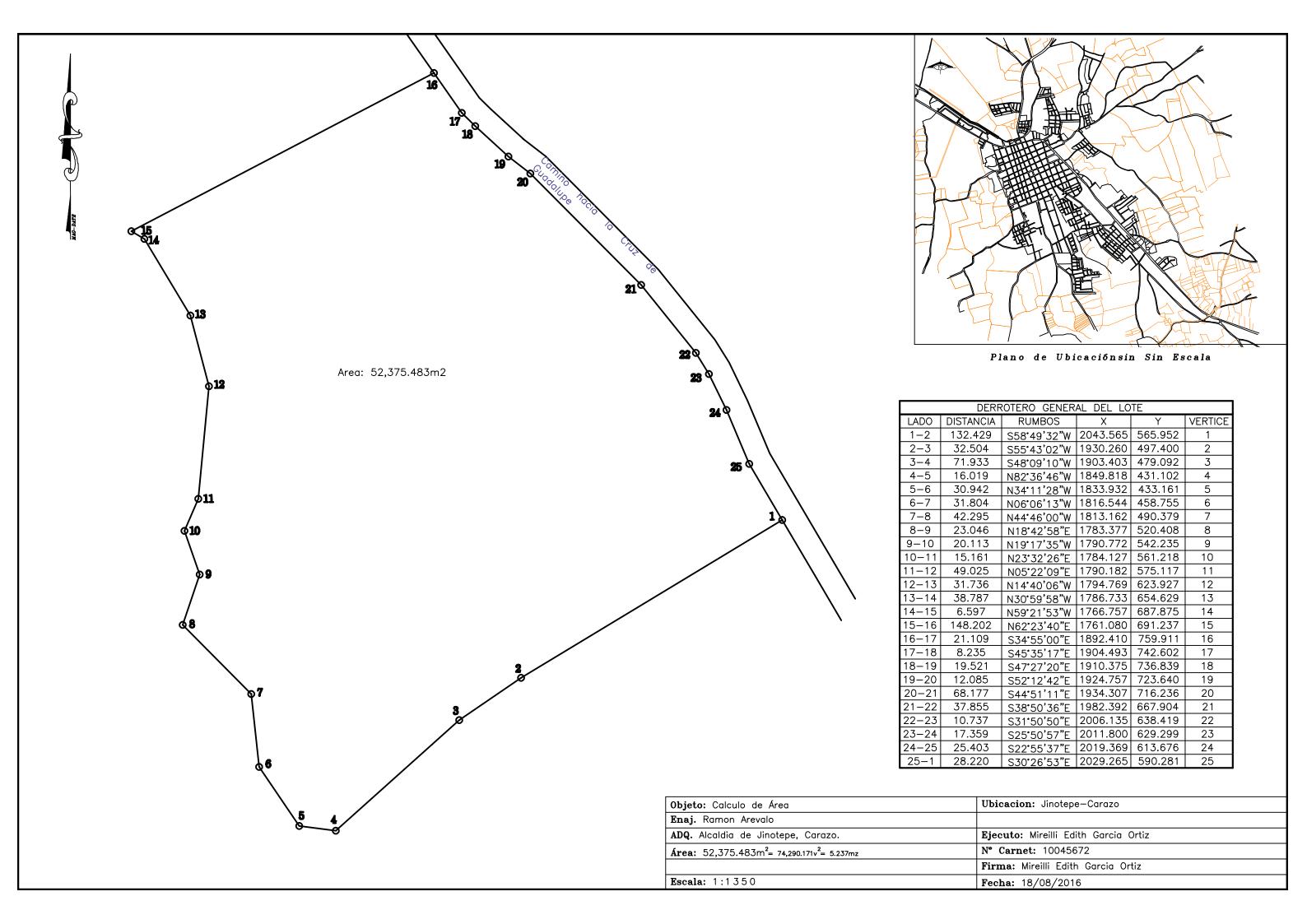
PUNTO	X	Υ	Z
W00	2028.286	590.7608	90.768
W10	2019.423	586.1669	90.528
W20	2010.559	581.579	89.75
W30	2001.85	577.068	88.613
W40	1992.833	572.3971	87.273
W50	1983.954	567.8359	86.473
X00	2032.688	582.2296	90.636
X10	2023.847	577.6153	90.773
X20	2015.006	573.001	90.414
X30	2006.396	568.5072	89.607
X40	1997.324	563.7723	88.623
X50	1988.483	559.158	87.196
Y00	2037.09	573.6984	90.321
Y10	2028.274	569.0555	90.536
Y20	2019.458	564.4157	90.63
Y30	2010.95	559.9317	90.4
Y40	2001.826	555.1269	89.731
Y50	1993.01	550.4841	88.538
Z00	2041.493	565.1672	90.293
Z10	2032.7	560.4983	90.461
Z20	2023.908	555.8295	90.713
Z30	2015.499	551.3644	90.674
Z40	2006.323	546.4918	90.465
Z50	1997.531	541.823	89.704
A60	1839.491	731.7234	99.83
A70	1983.653	727.0439	99.766
A80	1821.816	722.3644	99.261
A90	1812.978	717.6849	97.747
A100	1804.141	713.0054	96.201

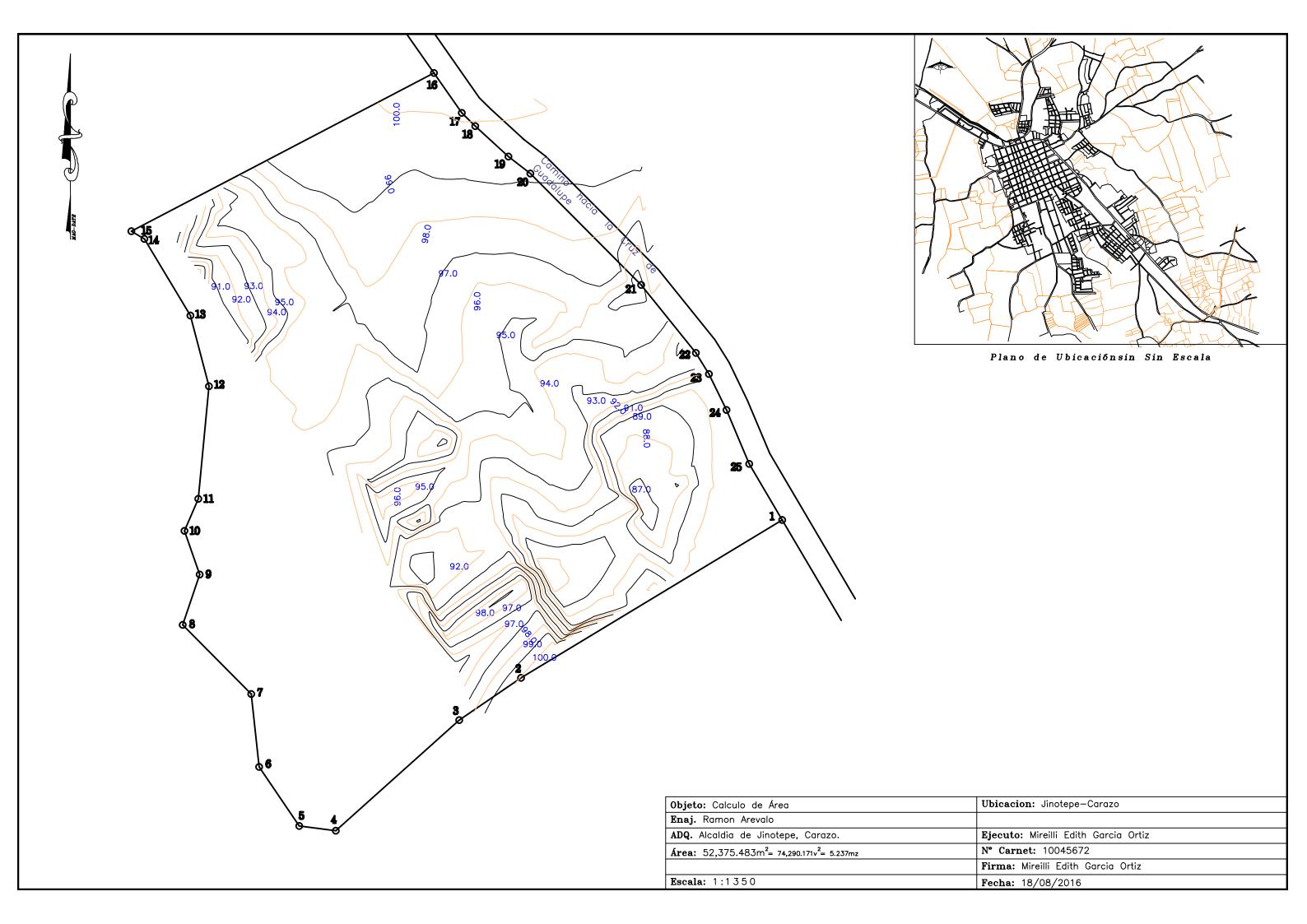
PUNTO	X	Y	Z
B60	1846.046	724.2018	99.836
B70	1837.379	719.531	99.715
B80	1828.713	714.8603	98.958
B90	1820.047	710.1895	97.534
B100	1811.381	705.5188	95.427
C60	1852.6	716.6802	99.608
C70	1844.105	712.0812	99.357
C80	1835.611	707.3562	98.755
C90	1827.119	702.6942	97.757
C100	1818.621	698.0322	95.909
D60	1859.155	709.1856	99.267
D70	1850.831	704.5054	99.006
D80	1842.508	699.8521	98.236
D90	1834.185	695.1918	97.072
D100	1825.861	690.5456	95.742
E60	1865.71	701.6371	98.913
E70	1857.557	696.9926	98.933
E80	1849.405	692.3481	98.165
E90	1841.254	687.7036	97.033
E100	1833.101	683.059	95.624
F60	1872.264	694.1155	98.431
F70	1864.283	689.4797	98.596
F80	1856.303	684.844	98.422
F90	1848.302	680.2082	97.433
F100	1840.341	675.5725	96.333
G60	1879.561	687.1706	98.024
G70	1871.629	682.4562	98.225
G80	1863.697	677.7419	98.324
G90	1855.766	673.0275	97.834

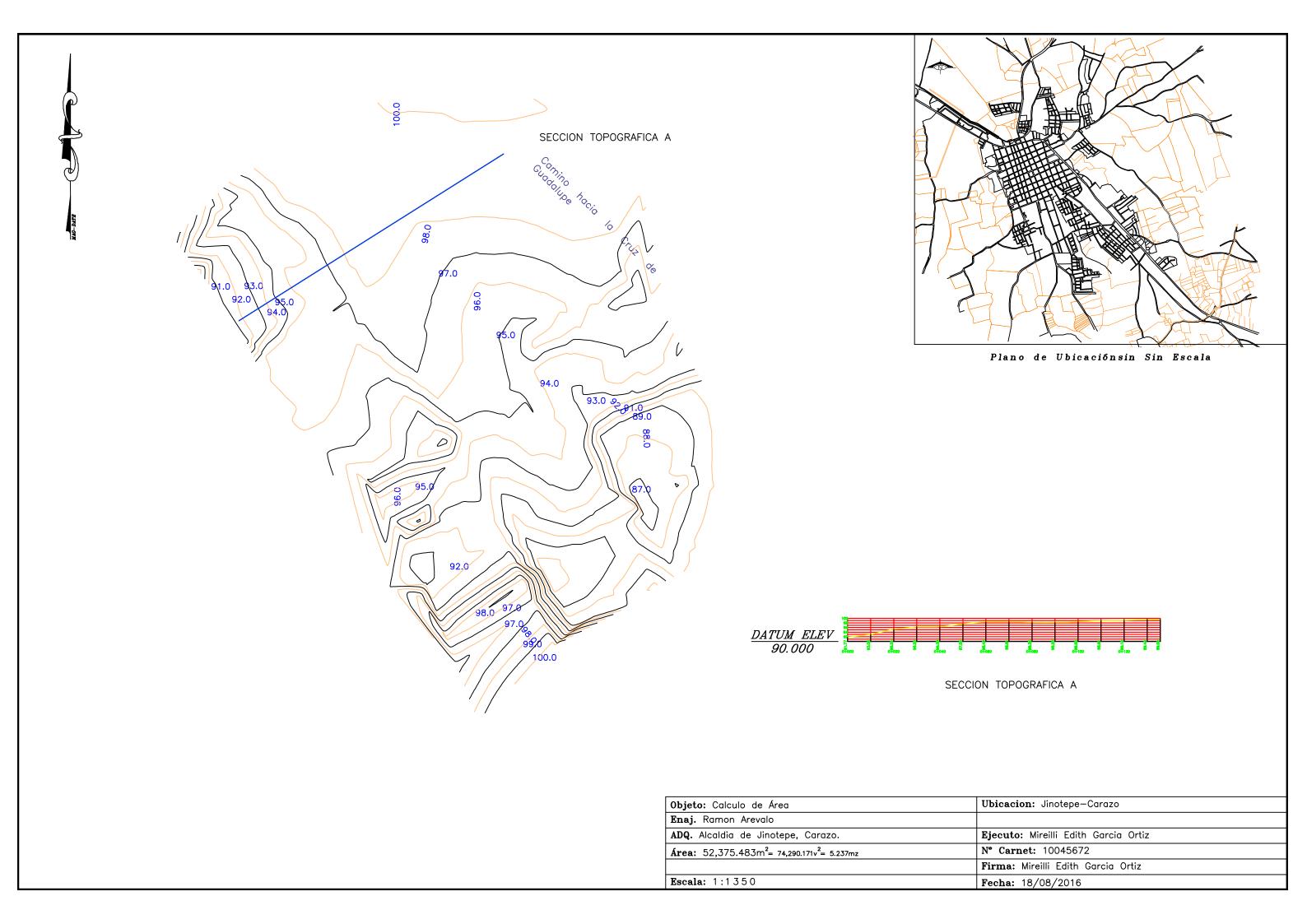
PUNTO	X	Y	Z
G100	1847.834	668.3131	96.693
H60	1886.859	680.2257	97.529
H70	1878.975	675.4238	97.769
H80	1871.092	670.6398	97.957
H90	1863.209	665.8468	97.957
H100	1855.326	661.0538	97.049
I 60	1894.156	673.2809	97.079
I70	1886.321	668.4093	97.329
180	1878.487	663.5377	97.653
190	1870.653	658.6061	97.877
I100	1862.818	653.7945	97.342
J60	1901.926	666.336	96.512
J70	1893.667	661.3858	96.88
J80	1885.882	565.4356	97.247
J90	1878.096	651.4853	97.624
J100	1870.31	646.5351	97.627
K60	1908.75	659.3911	95.872
K70	1901.013	654.3623	96.172
K80	1893.276	649.3334	96.692
K90	1885.54	644.3046	97.292
K100	1877.803	639.2758	97.735
L60	1915.248	652.0582	95.33
L70	1907.274	647.1098	95.85
L80	1899.299	642.1613	96.295
L90	1891.325	637.2129	96.71
L100	1883.351	632.2644	97.19
M60	1921.746	644.7254	94.935
M70	1913.534	639.8753	95.51
M80	1905.322	634.9892	95.98

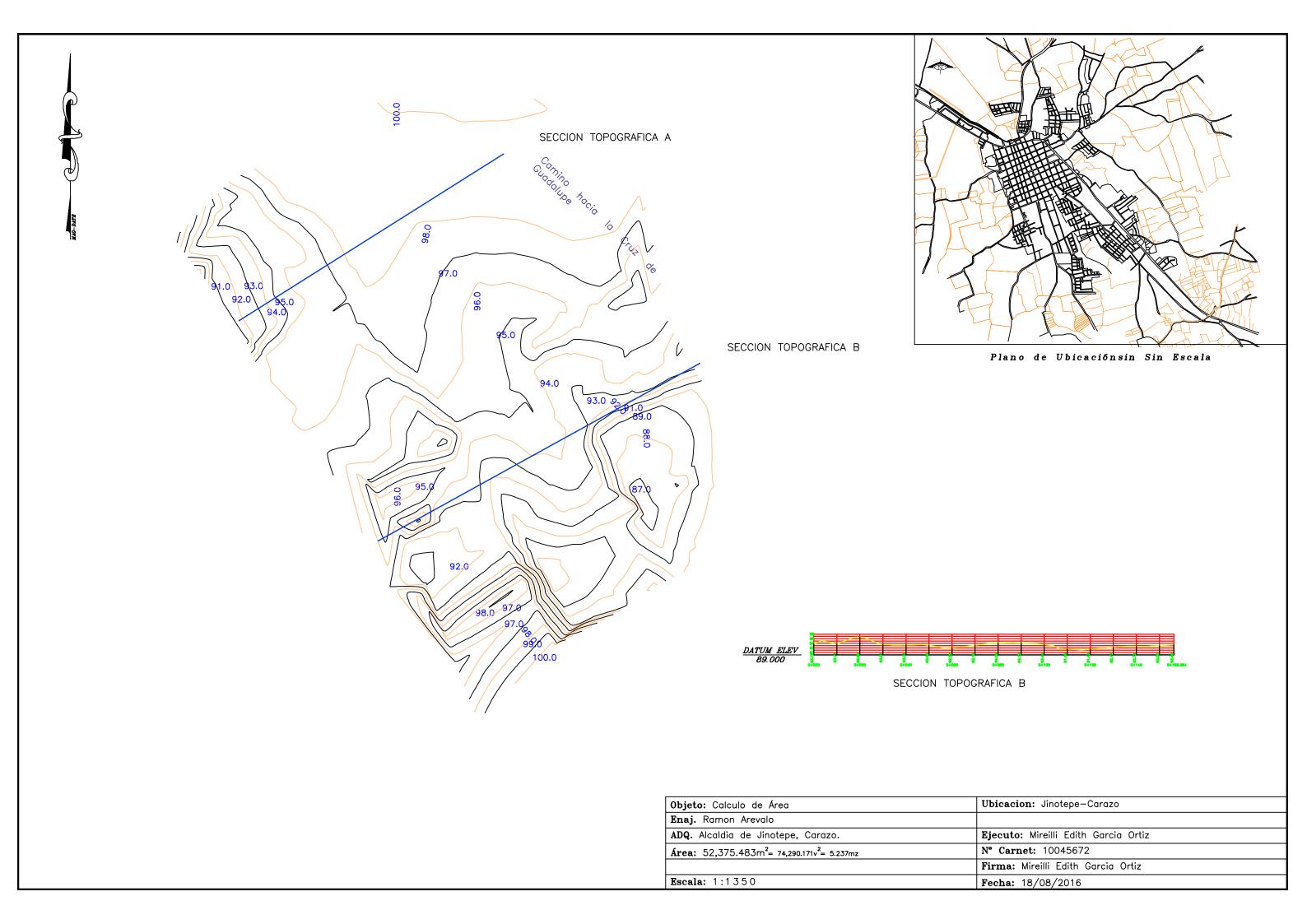
PUNTO	X	Y	Z
M90	1897.11	630.1212	96.315
M100	1888.899	625.2531	96.597
N60	1928.244	637.3925	94.53
N70	1919.794	632.6048	95.295
N80	1911.345	627.8171	95.685
N90	1902.896	623.0294	95.722
N100	1894.447	618.2417	95.97
O60	1934.742	630.0597	94.075
O70	1926.055	625.3523	94.945
O80	1917.368	620.645	95.68
O90	1908.681	615.9372	95.355
O100	1899.995	611.2304	95.285
P60	1941.239	622.7268	93.925
P70	1932.315	618.0999	95.035
P80	1923.391	613.4729	95.185
P90	1914.467	608.846	94.595
P100	1905.542	604.219	94.555
Q60	1946.218	614.2681	93.785
Q70	1937.319	609.6276	94.98
Q80	1928.42	604.487	94.65
Q90	1919.522	600.3464	93.75
Q100	1910.623	595.7059	93.576
R60	1951.196	605.8094	93.9
R70	1942.323	601.1552	94.435
R80	1933.45	596.5011	94.195
R90	1924.576	591.8469	92.92
R100	1915.798	587.0328	92.405
S60	1956.175	597.3507	93.735
S70	1947.327	592.6829	94.025

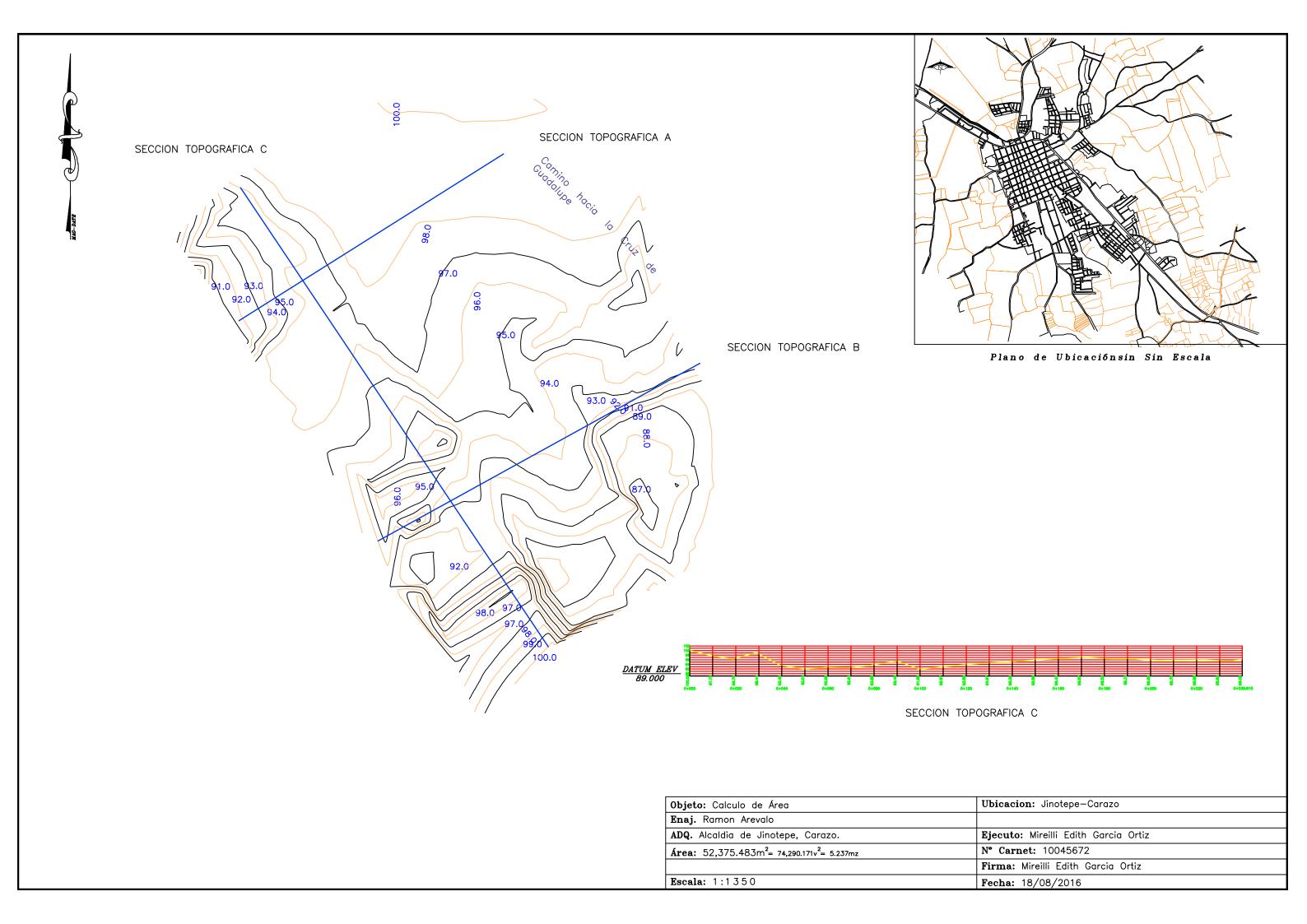
PUNTO	X	Y	Z
S80	1938.479	588.0152	93.555
S90	1924.631	583.3474	91.895
S100	1920.783	578.6796	91.215
T60	1961.153	588.892	93.02
T70	1952.331	584.2106	93.525
T80	1943.508	579.5293	92.86
T90	1934.686	574.8479	91.255
T100	1925.864	570.1665	90.135
U60	1966.132	580.433	91.815
U70	1957.335	575.7383	92.515
U80	1948.538	571.0433	92.255
U90	1934.741	566.3483	90.675
U100	1930.094	561.6534	89.505
V60	1979.626	571.8141	90.11
V70	1961.802	567.161	90.812
V80	1952.979	562.5078	90.88
V90	1944.156	557.8457	89.715
V100	1935.332	553.2015	88.33
W60	1975.107	563.2187	89.32
W70	1966.261	558.6014	88.991
W80	1957.414	553.9842	88.61
W90	1948.568	549.367	88.075
W100	1939.721	544.7497	87.64
X60	1979.614	554.5752	89.5
X70	1970.738	550.0062	88.983
X80	1961.862	545.4368	88.465
X90	1952.986	540.8647	88.065
X100	1944.11	536.2979	87.77
Y60	1984.108	545.9565	90.76


PUNTO	X	Y	Z
Y70	1975.206	541.4289	90.04
Y80	1966.303	536.9013	89.275
Y90	1957.401	532.3737	88.92
Y100	1948.999	527.8431	89.03
Z60	1988.602	537.3373	92.231
Z70	1979.673	532.8515	91.668
Z80	1976.745	528.3658	91.125
Z90	1961.816	523.88	91.03
Z100	1952.887	519.3943	91.225
A110	1799.241	708.0205	94.173
A120	1794.341	703.0357	92.253
A130	1784.54	693.066	89.703
A140	1779.64	688.0811	88.193
B110	1805.846	700.3597	95.353
B120	1800.307	695.1959	95.344
B130	1790.696	686.2374	93.434
B140	1785.054	680.9778	91.544
C110	1812.132	692.7298	95.814
C120	1806.236	687.4049	93.596
C130	1796.881	679.3774	91.719
C140	1790.467	673.8745	87.554
D110	1819	685.1045	95.899
D120	1812.131	679.6579	93.684
D130	1803.091	672.4886	91.989
D140	1795.881	666.7712	90.669
E110	1825.551	677.5068	95.839
E120	1817.997	671.9509	94.129
E130	1809.325	665.5735	92.539
E140	1801.294	659.6679	91.019


PUNTO	X	Υ	Z
F110	1832.088	669.9264	96.324
F120	1823.834	664.2801	95.25
F130	1815.581	658.6341	92.969
F140	1806.708	652.5645	91.664
G110	1839.229	662.5144	96.279
G120	1830.625	656.716	95.389
G130	1822.021	650.9181	93.454
G140	1812.92	644.7847	91.799
G150	1810.954	643.4597	90.509
H110	1846.374	655.0977	96.983
H120	1837.424	649.1422	96.938
H130	1828.474	643.1873	96.513
H140	1819.149	636.983	95.968
H150	1815.2	634.3548	95.188
I110	1853.523	647.6755	96.478
l120	1844.23	641.561	96.813
I130	1834.937	635.445	96.925
I140	1825.393	629.164	96.514
I150	1819.445	625.25	95.733
J110	1860.675	640.2543	95.848
J120	1851.041	633.9737	96.343
J130	1841.407	627.6935	96.719
J140	1831.647	621.3313	96.443
J150	1823.691	616.1451	95.383
K110	1867.829	632.8787	95.243
K120	1857.856	626.3816	95.693
K130	1847.883	619.9345	96.283
K140	1837.91	613.4874	96.363
K150	1827.937	607.0403	95.838


PUNTO	X	Υ	Z
L110	1873.75	626.2408	94.938
L120	1864.15	620.2172	94.913
L130	1854.549	614.1936	95.628
L140	1844.949	608.17	95.963
L150	1835.348	602.1464	95.883
M110	1879.671	619.653	93.968
M120	1870.443	614.0529	94.388
M130	1861.215	608.4258	95.323
M140	1851.987	602.8527	95.633
M150	1842.76	597.2526	95.473
N110	1885.591	613.0651	92.973
N120	1876.736	607.8885	93.638
N130	1867.881	602.7119	94.638
N140	1859.026	597.5353	94.878
N150	1850.171	592.3587	94.468
O110	1891.512	606.4773	92.418
O120	1883.03	601.7242	92.613
O130	1874.547	596.9711	93.908
O140	1866.065	592.218	94.118
O150	1857.583	587.4649	93.623
P110	1897.433	599.8894	90.668
P120	1889.323	595.5598	91.428
P130	1881.213	591.2302	92.674
P140	1873.104	536.9006	93.068
P150	1864.994	582.571	92.858
Q110	1902.46	591.3302	94.723
Q120	1894.298	586.9545	95.158
Q130	1886.131	532.5789	96.269
Q140	1877.972	578.2032	96.793


PUNTO	X	Y	Z
Q150	1869.81	573.8275	96.763
R110	1907.488	582.771	93.793
R120	1899.272	578.3492	93.698
R130	1891.057	573.9275	94.548
R140	1882.841	569.5057	94.488
R150	1874.626	565.084	94.543
S110	1912.515	574.2118	92.983
S120	1904.247	569.744	92.628
S130	1895.978	565.2761	92.539
S140	1887.71	560.803	92.385
S150	1879.441	556.3405	92.208
T110	1917.542	565.6526	92.268
T120	1909.221	561.1387	92.788
T130	1900.9	556.6248	91.503
T140	1892.578	552.1109	91.023
T150	1884.257	547.597	90.483
U110	1922.57	557.0934	92.323
U120	1914.195	552.5334	92.003
U130	1905.821	547.9734	91.618
U140	1897.447	543.4134	91.223
U150	1889.073	538.8354	90.843
V110	1926.969	547.9357	93.593
V120	1918.605	542.6698	93.528
V130	1910.241	537.4039	93.423
V140	1901.877	532.1381	93.223
V150	1893513	526.8722	92.843
W110	1931.368	538.778	98.838
W120	1923.014	532.8062	99.123
W130	1914.661	526.8345	98.968


PUNTO	X	Y	Z
W140	1906.307	520.8627	98.738
W150	1897.954	514.891	98.278
X110	1935.767	529.6203	96.488
X120	1927.424	522.9426	96.117
X130	1919.08	516.265	95.733
X140	1910.737	509.5874	95.278
X150	1902.394	502.9097	94.488
Y110	1940.166	520.4626	98.025
Y120	1931.833	513.0791	97.938
Y130	1923.5	505.6955	97.717
Y140	1915.167	498.312	97.319
Y150	1906.835	490.9285	96.507
Z110	1944.565	511.304	100.393
Z120	1936.242	503.2155	100.235
Z130	1927.92	495.1261	100.025
Z140	1919.597	487.0367	99.504
Z150	1911.275	478.9473	98.674

