

UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA, MANAGUA UNAN - MANAGUA

Recinto Universitario Rubén Darío (RURD). Facultad de ciencias e ingeniería. Departamento de Física. Trabajo de Seminario de Graduación para optar al título de: Licenciatura en Física con mención en Física Medica.

Tema: Protección Radiológica.

Sub-tema: Pruebas tipo realizadas en el sistema dosimétrico del Laboratorio de Dosimetría Externa (LDE) para la magnitud H*(10) utilizando la norma ISO-IEC 62387:2012, de septiembre a noviembre 2021 en el Laboratorio de Física de Radiaciones y Metrología (LAF-RAM).

Autores:

- Br. Vargas Velásquez Aura Carolina.
- Br. Bacca Arana Luis Antonio Miguel Eduardo.

Tutor:

• PhD. Norma Alejandra Roas Zúniga

Asesor:

• LIC. ESP. Ricardo Enrique Pérez Zeledón

Managua, noviembre 2021

1. Dedicatoria.

Dedico el presente trabajo primeramente a Dios por guiarme y brindarme sabiduría para poder lograr mis metas.

A mis padres Evert Vargas y Carolina Velásquez por ser mi apoyo incondicional en todo momento.

A mi familia por brindarme su apoyo, amor y motivación.

Br. Aura Vargas.

Dedico este trabajo mis padres por haberme forjado como la persona que soy hoy, muchos de mis logros se los debo a ustedes entre los que se incluye este. Especialmente a mí amada madre quien con su palabra de aliento no me dejaba decaer para que siguiera adelante y siempre sea perseverante y cumpla con mis ideales.

A mis hermanos por estar siempre presentes, acompañándome y por el apoyo moral, que me brindaron a lo largo de esta etapa de mi vida.

Finalmente a una persona muy especial L.Y.S.G la cual estuvo presente desde el principio, dándome todo su amor y apoyo incondicional.

Br. Luis Bacca

2. Agradecimiento.

Primeramente, damos infinitas gracias a Dios por habernos dado sabiduría todo este tiempo para poder culminar nuestra carrera.

A nuestros padres por brindarnos su incondicional apoyo.

A PhD Norma Roas por su apoyo para la realización de este trabajo.

A Lic. Esp. Ricardo Pérez por la dedicación que nos brindó en todo el transcurso de este trabajo.

Al equipo del Laboratorio de Física de Radiaciones y Metrología (LAF-RAM) por darnos la oportunidad de realizar dicho trabajo.

A cada uno de los docentes de la Facultad de ciencias e ingeniería que contribuyeron a nuestra formación profesional en todos estos años de aprendizaje.

Br. Aura Vargas. Br. Luis Bacca.

3. Valoración del Docente.

CARTA AVAL

Managua, Nicaragua 30 de noviembre del 2021

MSc Xochil Zambrana Directora Departamento de Física Facultad de Ciencias e Ing.

Estimado MSc. Zambrana

Por este medio estoy haciendo llegar mi valoración como tutora del seminario de graduación realizado por la Br. Vargas Velásquez Aura Carolina y el Br. Bacca Arana Luis Antonio Miguel Eduardo, se ha evaluado el informe final y se considera cumple con los requisitos establecidos con el actual reglamento estudiantil vigente. Este trabajo es de mucha relevancia para el Laboratorio de Dosimetría Personal Externa del LAF-RAM. El mismo lleva por título: **Pruebas tipo realizadas en el sistema dosimétrico del Laboratorio de Dosimetría Externa (LDE) para la magnitud H*(10) utilizando la norma ISO-IEC 62387:2012, de septiembre a noviembre 2021 en el Laboratorio de Física de Radiaciones y Metrología (LAF-RAM).**

Agradecería su gestión para que la pre-defensa y defensa sea realizada de acuerdo con la reglamentación. Gracias por su gestión y aprovecho la ocasión para saludarla.

Atentamente,

Msc. Norma Roas Zúniga Docente Dpto. de Física

A

3

Indice

1.	Dedicatoria	1
2.	Agradecimiento	2
3.	Valoración del Docente.	3
4.	Resumen	8
5.	introducción del Tema	9
6.	Introducción del Sub-Tema	. 10
7.	Justificación	. 11
8.	Objetivos	. 12
9.	Desarrollo del Sub-Tema.	. 13
	9.1 Termoluminiscencia (TL).	. 13
	9.2 Propiedades de los materiales	. 16
	9.3. Fluoruro de Litio	. 19
	9.3.2Funciones y características	. 20
	9.4 Pruebas Tipo	. 22
	9.5 Metodología	. 23
	9.5.1. Equipos	. 23
	9.5.2 Procedimientos	. 24
	9.5.2.1 Caracterización de dosímetros	. 24
	9.5.2.2 Calibración de dosis cero	. 26
	9.5.2.3. Calibración individual	. 28
	9.5.2.4. Caracterización de la sensibilidad del lector.	. 30
	9.5.2.5 Calibración del factor del sistema dosimétrico.	. 31
	9.5.2.5.1 Verificación de la calibración del sistema dosimétrico mediante linealidad	. 32
	9.5.2.6. Irradiación de Dosímetros en el LCD	. 33
	9.5.2.7 Pruebas tipo	. 34
	9.5.2.7.1 Coeficiente de variación	. 34
	9.5.2.7.2 No Linealidad	. 34
	9.5.2.7.2 Fading	. 38
	9.5.2.7.3. Prueba de Verificación	. 45
10	Resultados	. 46
11	. Conclusiones	. 58
12	. Bibliografía	. 59
13	. Anexos	. 60

ß

Abreviaturas

- LAF-RAM: Laboratorio de Física de Radiaciones y Metrología.
- LCD: Laboratorio de Calibración Dosimétrica.
- LDE: Laboratorio de Dosimetría Externa.
- IEC: Comisión Electrotécnica Internacional.
- *H**(10): Dosis equivalente ambiental a una profundidad de 10 mm.
- **TOE:** trabajador ocupacionalmente expuesto.
- TLD: Detectores Termoluminiscentes.
- TL: Termoluminiscente.
- LiF: Fluoruro de Litio.
- LiF: Mg, Ti: Fluoruro de Litio dopado con magnesio y titanio.
- LiF: Mg, Cu, P: Fluoruro de Litio dopado con magnesio, cobre y fosforo.

A

5

Índice de Figuras.

Figura 1. Modelo fenomenológico de la liberación estimulada térmicamente	14
figura 2.curvas termoluminiscentes de LiF: Mg, Ti (TLD-100) Fuente: (AAPM, 2021)	15
Figura 3. Ejemplos de curvas de crecimiento para tres materiales TL.D	16
Figura 4.Esquema curvas de respuesta a la dosis para varios casos	18
Figura 5 Partes de los dosímetros. Fuente: (L.Hernandez, 2004)	21
Figura 6. RE 2000 Readers se utiliza para la lectura del detector TL fuente: propia	23
Figura 7.Generador de Nitrógeno.Fuente: propia	23
Figura 8.IR 200. Fuente: propia	24
Figura 9. Montaje de irradiación de dosímetros. Fuente: propia	33
Figura 10. Gráfica de dosímetros vs cuentas. Fuente: Propia	46
Figura 11. Gráfico de Dosímetros vs sensibilidad individual Fuente: Propia	47
Figura 12. Nuevo factor de calibración. Fuente: propia	50
Figura 13.Linealidad de vueltas vs cuentas. Fuente: propia	51
Figura 14. Resultados del coeficiente de variación. Fuente: propia	52
Figura 15. Curva Trompeta de los límites superior e inferior. Fuente: propia	57

Índice de Tablas.

Tabla 1.Sistema de medida.	23
Tabla 2. Cantidad de dosímetros utilizados	25
Tabla 3.1. Calibración de Cero Dosis	26
Tabla 4.1 Dosímetros de calibración sensibilidad individual	28
Tabla 5 Dosímetros Seleccionados para la sensibilidad del lector	30
Tabla 6. Obtención de Reader para la magnitud ambiental	30
Tabla 7.Dosímetros Irradiados en el LCD y en el irradiador de mesa.	31
Tabla 8.Resultados estadísticos de la lectura	31
Tabla 9. Códigos y cuentas de los dosímetros	32
Tabla 10.Valores de la dosis H*(10) esperada para 3mSv (Grupo de Referencia)	35
Tabla 11.valores de la dosis H*(10) esperada para 0,1mSv	36
Tabla 12.valores de la dosis H*(10) esperada para 0,3mSv	36
Tabla 13.valores de la dosis H*(10) esperada para 1mSv	37
Tabla 14.valores de la dosis H*(10) esperada para 10 mSv	37
Tabla 15.valores de la dosis H*(10) esperada para 30mSv	38
Tabla 16. Valores del grupo 1 (grupo expuesto) leídos un día después	40
Tabla 17. Valores del grupo 5 (no expuesto) leídos un día después	40
Tabla 18. Valores del grupo 2 (expuesto) leídos una semana después	41
Tabla 19. Valores del grupo 6 (no expuesto) leídos una semana después	41
Tabla 20.Valores del grupo 3 (expuesto) leídos un mes después	42
Tabla 21. Valores del grupo 7 (no expuesto) leídos un mes después	42
Tabla 22.Valores del grupo 4 (expuesto) leídos un mes después	43
Tabla 23. Valores del grupo 1 (no expuesto) leídos un mes después	44
Tabla 24. Dosímetros Irradiados en la Fuente local	48
Tabla 25. Dosímetros irradiados en el LCD	49
Tabla 26.vueltas y promedio de cuentas.	51
Tabla 27 Resultados de la Prueba de CoV.	52
Tabla 28.Resultados de Prueba de No linealidad	53
Tabla 29. Resultados del Fading	55
Tabla 30 valores de los límites.	57
Tabla 31.Requisitos de funcionamiento para dosímetros H*(10) (Tomado de la norma I	EC
62387:2012)	60

4. Resumen.

Anteriormente en el Laboratorio de Física de Radiaciones y Metrología (LAF-RAM) se han realizado estudios de pruebas tipo en dosimetría para diferentes magnitudes como Hp (10), Hp (3) y Hp (0,07) ya que es el único a nivel nacional que cuenta con el equipo y personal capacitado para realizar calibración de dosímetros.

En este trabajo se realizaron pruebas tipo para la magnitud H*(10) utilizando la norma ISO-IEC 62387:2012, bajo el procedimiento técnico del Laboratorio de Dosimetría Externa (LDE).

Se calibro un lote de 200 dosímetros de fluoruro de Litio (LiF) para la magnitud H*(10), logrando verificar el cumplimiento de la norma ISO-IEC 62387:2012 aplicando el compendio de procedimiento de trabajo específico del LDE.

5. introducción del Tema.

La protección radiológica es la disciplina que estudia los efectos de las dosis producidas por las radiaciones ionizantes teniendo como fin proteger la salud de los seres vivos y el medio ambiente (Wikipedia, 2021). La dosimetría es uno de los métodos de la protección radiológica ya que se encarga de medir la dosis absorbida por un material o tejido como consecuencia de su exposición dentro del campo de la radiación. En este sentido, la dosis absorbida se traduce como la cantidad de energía que ingresa por unidad de masa a un material o tejido irradiado. (R.Echanique, 2018)

El uso de dosimetría ayuda a prevenir o limitar la aparición de efectos nocivos a causa de la radiación, así como la cuantificación de la dosis recibida por el personal ocupacionalmente expuesto (TOE), operación que se realiza con unos detectores especialmente calibrados llamados dosímetros. (R.Echanique, 2018)

La implementación de dosimetría radiológica para medir, prevenir y controlar los efectos de la radiación ionizante tiene aplicaciones estratégicas dentro del desarrollo de dicha actividad, donde la información es de vital importancia para la industria, el medio ambiente y la sociedad, existen tres tipos de dosimetría:

La dosimetría ambiental se realiza para medir la dosis de radiación dentro de los planes de vigilancia radiológica ambiental establecidos alrededor de centrales nucleares o de instalaciones radiológicas. (Raisa, 2016).

La dosimetría de área, determina la dosis de radiación en las zonas de trabajo ocupadas por personal expuesto y se emplea para la clasificación y el control de zonas radiológicas. (Raisa, 2016).

6. Introducción del Sub-Tema.

Para el desarrollo correcto de los programas de energía nuclear, radioterapia, radiodiagnóstico, medicina nuclear, así como las aplicaciones industriales de los radionúclidos, requiere, entre otras cosas, la vigilancia de las dosis que recibe el personal que trabaja en ellos.

Para controlar esta exposición es necesario evaluar y cuantificar los niveles de radiación ionizante a los que son expuestos los trabajadores durante sus labores día a día, implementando diversos métodos o estrategias.

Dentro de esas estrategias se toma en cuenta la medición de dosis de radiación a partir del monitoreo de área utilizando dosímetros termoluminiscentes que evalúan las dosis ambientales.

Como parte de los servicios de vigilancia radiológica que promueve el Laboratorio de Física de Radiaciones y Metrología (LAF-RAM) se incluyen la evaluación de dosis usando dosímetros calibrados en magnitud de dosis equivalente ambiental, por ende, este servicio debe de cumplir con los estándares de calidad que establece el propio sistema de gestión que rige al LAF-RAM.

El Laboratorio de Dosimetría Externa (LDE) en su compendio de procedimientos de trabajo, establece la aplicación del procedimiento de verificación del método de ensayo (LDE-PT-02) para la realización de un conjunto de pruebas que se emplean para evaluar el funcionamiento de su sistema de dosimetría siguiendo la norma comisión electrotécnica internacional IEC 62387.

Este trabajo de investigación será la aplicación del LDE-PT-02 para un lote de 200 dosímetros ambientales que permitirán aumentar las capacidades de monitorio del LAF-RAM.

10

7. Justificación.

El laboratorio de dosimetría externa (LDE) cuenta con un sistema dosimétrico calibrado para servicios de dosimetría personal en las magnitudes Hp (3), Hp (10) y Hp (0.07). Anteriormente se han realizado investigaciones relacionadas a la calibración del sistema dosimétrico para dichas magnitudes rigiéndose bajo la norma IEC 62387:2012 para pruebas de desempeño de detectores termoluminiscentes.

Debido a la creciente demanda por parte de las instituciones de un servicio de monitoreo ambiental, utilizando dosímetros TLD surge la necesidad de ampliar las capacidades técnicas del servicio de dosimetría en cuanto al desarrollo de calibración del sistema dosimétrico para la magnitud H*(10) siguiendo la norma IEC 62387:2012 y compendio de procedimiento de trabajo específico del LDE para dosímetros ambientales.

8. Objetivos.

Objetivo general

• Realizar pruebas de desempeño para dosímetros ambientales según el procedimiento técnico del LDE-PT-02 conforme a la ISO-IEC 62387:2012.

Objetivos específicos

- Verificar el método de ensayo dosimétrico para las pruebas de coeficiente de variación, no linealidad y fading en la magnitud H*(10).
- Realizar la calibración del sistema dosimétrico para la magnitud H*(10).
- Caracterizar un lote de dosímetros para proporcionar el servicio de las instituciones del país.

9.1 Termoluminiscencia (TL).

La termoluminiscencia (TL) es la emisión de luz de un aislante o semiconductor cuando este es calentado. No debe confundirse con la luz emitida por una sustancia cuando es calentada hasta la incandescencia. La TL es la emisión de una energía previamente absorbida como resultado de un estímulo térmico. La excitación inicial del material (típicamente por irradiación) es la fuente de energía, mientras que el calentamiento actúa sólo como un disparador que ayuda en la liberación de esta energía acumulada. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

La importancia de la termoluminiscencia para la dosimetría de la radiación radica en el hecho de que la cantidad de luz emitida es proporcional a la dosis equivalente ambiental H*(10) por el material irradiado. En condiciones favorables, la intensidad de la luz emitida por un material TL es proporcional a la dosis absorbida y, por lo tanto, con una calibración adecuada, se puede evaluar la dosis aplicada en el campo de radiación. Entonces, la dosimetría termoluminiscente (DTL) resulta ser un método establecido para la dosimetría de la radiación. El uso de la dosimetría de la radiación en la práctica médica es una necesidad de optimizar el uso de las radiaciones en los trabajadores ocupacional expuestos (TOE) y medio ambiente. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

9.1.1 Almacenamiento de energía.

Los procesos que gobiernan la absorción de energía de la radiación ionizante dependen de la energía. Por debajo de aproximadamente 15keV en la mayoría de los materiales, el efecto fotoeléctrico domina para energías más altas en materiales de bajo zeff (número atómico efectivo). La estabilización de esta energía absorbida tiene lugar a través de dos procesos principales en los materiales aislantes, a saber, la excitación electrónica y el daño por desplazamiento. Cada uno de estos últimos procesos da como resultado el daño del material en el sentido de que los defectos inducidos por la radiación se crean o se aumentan por encima de los defectos térmicos y las impurezas que ya existen en el material desde su fabricación. Un defecto inducido por radiación es cualquier especie electrónica o atómica que no está en equilibrio y que existe en el material después de la irradiación pero que no estaba presente de antemano, por lo que es un material TLD impuro (Por ejemplo, el conocido fluoruro de Litio (Lif) dopado intencionalmente con impurezas del Magnesio (mg) y Titanio (ti) puede tener estados de energía eléctrica localizados existentes dentro del material antes de la irradiación, pero solo después de la irradiación encontramos que algunos de estos estados están ocupados por una concentración de electrones que no está en equilibrio. (S.Mckeever, M.Moscovith, P.Townsend, 1995).

9.1.2 Liberación de Energía.

La liberación de la energía almacenada en forma de luminiscencia es estimulada por un aumento en la temperatura de la muestra. La energía liberada proviene dela estimulación por calor (TL) o luz así liberando las cargas atrapadas. Una vez que se libera el electrón atrapado, puede recombinarse con el agujero atrapado, creando un defecto en el estado excitado. Los electrones sufren des excitación de estados excitados meta estables al estado fundamental, restaurando así el equilibrio, TL resulta de la relajación de estos defectos para volver al estado fundamental por emisión de luz. (AAPM, 2021). En la Figura 1 se muestra el fenómeno de la liberación de energía.

Figura 1 Modelo fenomenológico de la liberación estimulada térmicamente de electrones atrapados de estados localizados a nivel energético Ec-E. Fuente: (S.Mckeever,M.Moscovith, P.Townsend, 1995).

Los significados de los diversos términos de la figura 1 son: ST = trampa poco profunda; AT = trampa 'activa'; DET = trampa de electrones profundos; DHT = trampa de agujeros profundos, en la que se produce la recombinación de orificios de electrones para producir un fotón TL; Ec y Ev son la banda de conducción y los bordes de la banda de valencia, respectivamente, y Et es la energía de Fermi. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

El proceso se inicia cuando el acoplamiento de fotón entre el electrón y la red resulta en la absorción de una cantidad de energía térmica por el electrón. La probabilidad por segundo de que esta cantidad de energía es suficiente para liberar el electrón atrapado de su estado localizado (es decir, para superar la barrera energética E y experimentar una transición a la banda de conducción) es Dado por: $p(T) = s(T)e^{-E/KT}$ Ec.1

Fuente: (S.Mckeever, M.Moscovith, P.Townsend, 1995).

Donde **s** (T) es un término débilmente dependiente de la temperatura conocido como "el factor de frecuencia Y está relacionado con la frecuencia vibratoria de la red local y la asociación de cambio de entropía con la liberación de la carga. E: es la energía de activación necesaria para liberar lones intersticiales que luego se difunden a los sitios de vacantes **KT** es la temperatura. (S.Mckeever,M.Moscovith, P.Townsend, 1995).

9.1.3 Curva Glow.

La manera en que se relaciona el fenómeno de la termoluminiscencia con la exposición a la radiación es a través del gráfico de la curva de brillo o Glow Curve. (observar figura 2). Esta curva representa la intensidad de Luz en función de la temperatura. La señal TL puede definirse como la intensidad máxima de un pico TL. Considerando que los diferentes centros de captura o trampas dentro del material obedecen a distintos niveles energéticos, así requieren diferentes temperaturas para su liberación y a medida que el detector se calienta, los centros de captura se estimulan secuencialmente generando distintos picos. (AAPM, 2021)

Esta curva es importante en la dosimetría y su objetivo es extraer información sobre la dosis absorbida y el campo de radiación de la emisión de TL medida. Los primeros en presentar una descripción simplificada del fenómeno TL fueron Randall y Wilkins quienes adoptaron un modelo de recombinación de agujeros de electrones en donde la carga liberada fue transportada a través de la banda es localizada apropiada al centro de recombinación y la probabilidad de volver a atrapar la carga fueron insignificantes con la probabilidad de recombinación. El modelo Randall-Wilkins (RW) invocó un tipo de trampa y un tipo de centro de recombinación solamente y esto conduce a la llamada descripción de primer orden del proceso TL. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

La importancia de entender la forma de un pico de brillo TL y los parámetros que lo gobiernan radica en la interpretación de los cambios en la curva de brillo que a menudo es el resultado, por ejemplo, de un aumento de la dosis absorbida, o de varios tratamientos térmicos (Incluido el almacenamiento previo o posterior a la irradiación a temperatura ambiente). (S.Mckeever,M.Moscovith, P.Townsend, 1995).

Figura 2.curvas termoluminiscentes de LiF: Mg, Ti (TLD-100) sometidos a diferentes tratamientos de recocido pre irradiación. Los picos 1–5 corresponden a diferentes centros de captura (que producen señal a diferentes temperaturas);el pico 5 se produce a la temperatura de máxima señal. Fuente: (AAPM, 2021)

15

9.2 Propiedades de los materiales.

9.2.1 Respuesta a la dosis:

La respuesta a la dosis F (D) se define como la dependencia funcional de la intensidad de la señal de TL medida tras la dosis equivalente ambiental. Los materiales dosimétricos ideales tienen una respuesta de dosis lineal en un amplio rango de dosis; sin embargo, la mayoría de los materiales utilizados en la dosimetría práctica muestra una variedad de efectos no lineales en particular, a menudo se encuentra que la respuesta de un material TLD es lineal, luego supra lineal, luego sub-lineal a medida que aumenta la dosis. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

Definimos la respuesta a la dosis normalizada Función (o índice de supra linealidad) (D) tal que:

$$f(D) = \frac{\left(\frac{F(D)}{D}\right)}{\left(\frac{F(D1)}{D1}\right)} Ec.2$$

Fuente: (S.Mckeever, M.Moscovith, P.Townsend, 1995)

Donde F (D) es la respuesta a la dosis D, y D, es una dosis baja a la que la respuesta de la dosis

La respuesta es lineal. Por lo tanto, nuestro dosímetro ideal satisfaría (D) = 1 sobre una dosis amplia Rango, digamos de D= 0 Gy a varios mGy. Desafortunadamente, A (D) = 1 solo se encuentra En un rango de dosis estrecho, hasta unos pocos Gy, en muchos materiales TL.D. Supra linealidad, Definido como (D) > 1, se observa comúnmente, mientras que la sub linealidad (RD) < 1) es la mayoría A menudo observado durante la aproximación a la saturación. Estas características se ilustran en la figura 3.

Figura 3.Ejemplos de curvas de crecimiento para tres materiales TL.D. Fuente: (S.Mckeever,M.Moscovith, P.Townsend, 1995).

A. La respuesta de TL para el 100 °C pico en oxido de silicio (SiO 2). Este es un ejemplo de una señal TL que exhibe supra linealidad sobre él se examinó todo el rango de dosis.

B. El conocido comportamiento lineal-supra lineal – sub lineal de la cima 5 de TLD-100 En fluoruro de litio, magnesio y Titanio (LiF: Mg Ti).

C. La respuesta a la dosis de TLD-400 di fluoruro de calcio y manganeso (CaF2: Mn) en la que la supra linealidad es muy débil. (Este último material es un ejemplo de un caso complejo ya que el físico La forma del material (polvo, astillas delgadas, virutas gruesas) afecta a la cantidad de supra linealidad Observado). La línea discontinua muestra una respuesta lineal.

Las propiedades supra lineales se pueden eliminar por completo mediante un recocido apropiado Tratamientos. En fluoruro de Litio, Magnesio y Titanio (LiF: Mg. Ti) al disminuir el contenido de Mg mejora la supra linealidad, Mientras que aumentar el contenido de impurezas OH disminuye la supra linealidad. Todos estos factores indican una dependencia de A(D) de la naturaleza del material huésped y su defecto y Estructura.

Los materiales basados en fluoruro de litio (LiF) muestran claramente que el mecanismo crítico es el de la competencia, durante la etapa de calentamiento de la lectura de TL, los electrones liberados de las trampas, puede recombinarse con agujeros atrapados para producir TL o volver ser atrapados. Las trampas que actúan como centros competidores. A dosis bajas, donde la distancia entre Trampas y sitios de recombinación es grande, la probabilidad de que una carga liberada pueda encontrar el sitio de recombinación sin caer en una trampa competidora es bajo. Así, la respuesta del dosímetro se reduce en esta región de dosis baja. (S.Mckeever,M.Moscovith, P.Townsend, 1995).

En la figura 4 se muestran las curvas de respuestas para varios casos a continuación se explica la figura antes mencionada.

Fotón de alta energía Irradiación (fig. a):

- Curva A, crecimiento supra lineal debido a la competencia durante el calentamiento. Con un isotrópico Distribución de trampas, trampas competidoras y sitios de recombinación, la curva de respuesta a la dosis es supra lineal ((D) > I) desde las dosis más bajas, hasta la saturación (RD) < I).
- Curva B, ausencia de La competencia resulta en más TL por dosis unitaria a dosis bajas y una respuesta lineal (D) = 1).
- Curva C, asociación espacial de trampas y centros de recombinación conduce a una región lineal inicial.

Antes del inicio de la supra linealidad. Las tres curvas se muestran con la misma región de saturación, Para mayor simplicidad. La línea discontinua es para guiar el ojo y representa una pendiente (en el gráfico log-log) De 1, es decir, AD) = 1 (linealidad).

Irradiación de HCP (fig. b):

- Curva A, la curva de respuesta a la dosis para bajas LET irradiación sin competidores. Esto es equivalente a la curva B de la parte (a).
- Curva B. el Respuesta a la dosis de partículas LET altas. La respuesta a la dosis es nuevamente lineal desde la alta ionización La densidad garantiza que, dentro de la pista, haya una falta de competidores y una recombinación de todas las Cargas atrapadas. El nivel de saturación es bajo.
- Curva C, respuesta a la dosis para el caso intermedio, Con la competencia. La interacción exitosa entre pistas ocurre cuando la distancia entre vías es Lo suficientemente bajo, causando supra linealidad y un nivel de saturación intermedio.

Una propiedad adicional requerida de un material de TLD es que su respuesta a la dosis debe Ser independiente de la tasa de irradiación. Mediciones a tasas de dosis extremadamente altas El uso de fuentes de rayos X pulsadas ha revelado que este es el caso de varios Materiales TLD. Afortunadamente, la dependencia de la tasa de dosis no parece ser un problema para La mayoría de los materiales. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

Figura 4.Esquema curvas de respuesta a la dosis para varios casos. Fuente: (S.Mckeever,M.Moscovith, P.Townsend, 1995)

9.2.1.2 Sensibilidad.

La sensibilidad de un material de TLD en particular se define formalmente como la señal TL de concentración por unidad de dosis absorbida. Para definir dicho parámetro en un sentido absoluto, sin embargo, es difícil ya que este parámetro también depende del sistema de lectura de TL utilizado en la medición, junto con los filtros ópticos, la velocidad de calentamiento y el método de medición de la señal. Para superar las incertidumbres asociadas con la medición absoluta de la sensibilidad normalmente se define una sensibilidad relativa comparando la señal TL del material de interés con la señal TL de Fluoruro de Litio LiF en dosímetros termoluminiscente TLD-100. Por lo tanto, TLD-100 tiene una sensibilidad de 1; se define una sensibilidad de S(D):

 $S(D) = \frac{F(D)material}{F(D) TLD_{100}} Ec.3$

Fuente: (S.Mckeever, M.Moscovith, P.Townsend, 1995)

A medida que son expuestos reducen su sensibilidad. La sensibilización es la capacidad para aumentar la sensibilidad de un material TLD por pre exposición y/o reconocido de tratamientos. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

9.3. Fluoruro de Litio.

El Fluoruro de Litio (LiF) en forma de LiF: Mg, Ti, ha sido el pilar de la industria del TLD durante dos décadas y es el material de TLD más utilizado en el mercado desde su primera introducción hace más de 25 años. Incluso hoy en día sigue siendo el más popular Material de TLD, especialmente para la dosimetría del personal. Esta popularidad parece deberse a la casi equivalencia tisular del material, junto con su fiabilidad general, a pesar de la complejidad de la curva de resplandor y solo es una sensibilidad moderada. Los avances recientes con LiF: Mg. Cu, P apuntan al desarrollo de LiF ultrasensible (S.Mckeever,M.Moscovith, P.Townsend, 1995).

9.3.1 LiF:Mg + Cu,P.

Propiedades físicas generales

- El material se ha producido para uso dosimétrico en forma de polvo policristalino.
- Chips prensados en caliente de línea (4,0 x 4,0 x 0,8 mm).
- Chips circulares sinterizados (4,5 mm Diámetro × 0,8 mm), y películas delgadas (3,5-5 mg.cm-3).
- Los cristales individuales no han demostrado ser exitosos debido a la concentración extremadamente alta de transiciones de magnesio (Mg), Cobre (Cu) y, especialmente, Fosforo (P).

- La preparación de los polvos se procede mezclando polvo de LiF de grado óptico con fluoruro de magnesio (Mg,F 2), Fluoruro de cobre (Cu,F 2) y fosfato monoamónico (NH 4 H 2,PO 4); polvo en un crisol de platino a 1000-1050 °C bajo en nitrógeno N 2(55) o N 2/O 2(54) atmósfera.
- Después de 30 minutos en la etapa fundida, la muestra es rápido, enfriado a temperatura ambiente el material policristalino se pulveriza, y se pasa por un colador fino o tamiz para deshacerlo en partículas más finas.
- Para hacer chips, los polvos se prensan o sinterizan en caliente, luego Cortado.
- Las películas delgadas (5x 5 mm) Se preparan fijando una capa de polvo en un Cinta de poliamida con adhesivo de órgano silicio y cubierta por una lámina de polietileno.

Ha habido varios estudios para determinar las concentraciones óptimas de Mg, Cu y P para una máxima sensibilidad y reproducibilidad. Hay dos cuestiones de importancia:

- 1. Es deseable obtener la máxima sensibilidad posible y para esto se ha encontrado que un alto contenido de P es esencial.
- 2. Es importante reducir al mínimo los picos de TL de alta temperatura, ya que se encuentra que la calefacción LiF: las muestras de Mg, Cu, P más allá de 240 °C tienen un efecto perjudicial sobre la reproducibilidad de la muestra. Por lo tanto, los picos de brillo que permanecen por encima de esta temperatura pueden causar acumulación de una señal residual que afecta al TLD para estos materiales. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

9.3.2Funciones y características

9.3.2.1Funciones.

- La cantidad de luz emitida por un cristal TLD es pequeña.
- Para leer la salida correcta, se coloca en un cuarto oscuro equipado con un tubo fotomultiplicador, un recipiente vacío que es extremadamente sensible a la luz.
- Cuando el chip se calienta, el fotomultiplicador convierte la luz en una señal electrónica que se amplifica a continuación.

- El resultado se denomina "curva de brillo o curva Glow " y la región por debajo de esta curva es directamente proporcional a la cantidad de radiación absorbida en el chip.
- Al monitorear la exposición de todo el cuerpo, un cristal TLD se coloca debajo de cada filtro en el dispositivo que se utiliza como un cinturón de clip en una chaqueta.
- Cuando se utiliza como un monitor de dedo, el cristal TLD se coloca en un pequeño hueco de un anillo de plástico y es cubierto con una etiqueta de identificación de protección. (S.Mckeever,M.Moscovith, P.Townsend, 1995)

9.3.2.2 Características.

- Retienen los portadores capturados por tiempos suficientemente largos a la temperatura existente en los puntos de medida.
- Presentan alta intensidad de emisión de luz terminoluminiscente.
- Tienen respuesta lineal en un amplio intervalo de dosis.
- Número atómico efectivo análogo al tejido blando, son pequeños y estables. (S.Mckeever, M.Moscovith, P.Townsend, 1995).

Los dosímetros que se utilizaron en el trabajo fueron los TLD de chips circulares sintetizados en la figura 5 se muestran las partes de los dosímetros.

Figura 5 Partes de los dosímetros. Fuente: (L.Hernandez, 2004)

9.4 Pruebas Tipo.

Las pruebas tipo son un conjunto de pruebas que se emplean para evaluar el funcionamiento de un sistema de dosimetría y son ampliamente utilizados en la metrología de las radiaciones. (C.Romel, 2015).

Dichas pruebas incluyen pruebas de las características de funcionamiento del sistema, así mismo incluye la consideración de otras características dosimétricas, tales como la linealidad de la respuesta dosimétrica, el rango de las dosis medidas, la capacidad del sistema para operar satisfactoriamente en un intervalo razonable de condiciones de temperatura y humedad y su capacidad para responder adecuadamente a tasas de dosis altas. Las pruebas tipo de los instrumentos empleados en la vigilancia radiológica del lugar de trabajo son necesarias para comprobar la idoneidad del instrumento. (OIEA, 2004).

En el presente trabajo se realizaron una serie de procedimientos y pruebas para calibrar el sistema dosimétrico del LDE para la magnitud H*(10), los cuales se mencionan a continuación:

- Caracterización de Dosímetros.
- > Calibración *de dosis cero*.
- Calibración *individual.*
- > Caracterización de la sensibilidad del lector.
- > Calibración del factor del sistema dosimétrico.
- > Verificación de la calibración del sistema dosimétrico mediante linealidad.
- Irradiación de Dosímetros.
- Coeficiente de variación.
- > No linealidad.
- Fading.
- Prueba de verificación.

9.5 Metodología.

9.5.1. Equipos

El sistema dosimétrico de medidas con el que cuenta el LAF-RAM es el empleado a lo largo del estudio, en la Tabla 1 se muestra lo utilizado para proporcionar la información que se obtiene en cada medición y en las figuras 6,7, y 8 se muestran los equipos.

Nombre del Instrumento	Marca	Modelo
RE 2000 Readers	RADOS TLD System	RE-2000
Generador de Nitrógeno	RADOS TLD System	Parker Domnik Hunter
IR 200 Irradiador compatible	RADOS TLD System	IR 200
to RE-200 readers		

Tabla	1.Sistema	de medida.
-------	-----------	------------

Figura 6. RE 2000 Readers se utiliza para la lectura del detector TL, el lector puede procesar automáticamente 20 tarjetas de dosímetros u 80 elementos TL individuales fuente: propia.

Figura 7.Generador de Nitrógeno, se utiliza para suministro conveniente y económico de nitrógeno de alta pureza para TLD de gas caliente. Adecuado para TLD Reader modelo RE-2000. Fuente: propia.

Figura 8.IR 200. 90Sr Irradiador, se utiliza para la calibración de la sensibilidad del sistema para conocer la dosis local, para verificar la linealidad del sistema. Fuente: propia.

9.5.2 Procedimientos

Se detallan los procedimientos que se llevan a cabo para la caracterización del sistema dosimétrico en magnitud H*(10), también se encuentran descrito las preparaciones generales y las consideraciones para la realización de cada una de las pruebas tipo.

Antes de iniciar la realización de las pruebas, se llevaron a cabo una serie de procedimientos para la calibración del sistema dosimétrico, para esto, se siguió los instructivos de Calibración del factor de sensibilidad del lector (LDE-IT-03) y procedimiento Verificación del Método (LDE–IT–02).

9.5.2.1 Caracterización de dosímetros

Se tomó un lote de 200 dosímetros para realizar pruebas de calibración tanto de cero dosis como de sensibilidad de cristal, se establecieron rangos de exclusión de 4500 a 7500 cuentas para calibración base (cero dosis) y 0.8 a 1.20 del factor de sensibilidad individual. En la tabla 2 se muestran el lote de dosímetros que se utilizaron.

Código de Dosímetros utilizados									
500**	523	558	588	611*	638	660**	680*	711	737
501	525**	560	589*	612	639*	661	683	712	738
503	527	563	590*	616	640*	662	684	713	739
505	528	564	591	618*	641*	663	686	714	740
506	529*	565	593	619	643	664	689	715	741
507	530**	566*	595	620*	644*	665**	690	716	742
509	531	567	596	621	645	666*	691	718	743
510	532	568	597*	622*	646	667	692	720	744*
511*	533*	569	598	623	647	668**	693	721	745
512	535	570	599	627	648	669*	694*	722	746
513	537	571	600*	628**	649	670	695	723	748
514*	539	573	601	629	651*	671	697	724	749*
515	542	575	602	630*	652	672*	698	726	751
516	547	577	603*	631	653	673	699	727*	752
517*	548	579	604	632	654	674	700	728	753
518	550	582*	605	633	655	675*	701	729	754
519	551	583	606	634	656	676	703	730	755
520	552	584*	607	635	657	677	705	731	756
521	554	586	609	636*	658*	678	706	732*	757*
522	557*	587	610	637	659	679	707	735	

Tabla 2. Cantidad de dosímetros utilizados.

Los códigos que están marcados con un (*) no se encontraban dentro el rango de aceptación para dosis Cero y los marcados con (**) para sensibilidad de cristal, por lo tanto, fueron descartados.

9.5.2.2 Calibración de dosis cero.

Este factor corresponde al número de cuentas que se obtiene al leer un dosímetro que no ha sido expuesto a ninguna dosis de radiación, conocido como cuentas de fondo. En la tabla 3.1 y 3.2 se muestran los dosímetros que se utilizaron para la calibración dosis cero.

código	cuenta cero	código	cuenta cero	código	cuenta cero	código	cuenta cero	código	cuenta cero
500	7402	523	4501	558	5349	588	5862	611	4233
501	5566	525	5946	560	6858	589	8813	612	6853
503	5992	527	5408	563	5984	590	7615	616	5744
505	4911	528	4976	564	5304	591	4816	618	8581
506	4995	529	3958	565	5207	593	6250	619	4785
507	5721	530	5035	566	4203	595	5502	620	4439
509	6361	531	6312	567	5783	596	6439	621	4643
510	5189	532	4841	568	5733	597	8090	622	4155
511	4282	533	5135	569	5837	598	7040	623	6332
512	5231	535	4571	570	5474	599	4818	627	4680
513	6088	537	5349	571	5136	600	8618	628	5177
514	7962	539	6520	573	4781	601	6805	629	4571
515	5558	542	7035	575	5520	602	4552	630	4422
516	7252	547	5054	577	5120	603	7765	631	4594
517	4339	548	7072	579	5752	604	5743	632	6305
518	6142	550	6111	582	4077	605	6778	633	6581
519	7452	551	5394	583	4638	606	5522	634	5496
520	5658	552	7946	584	8460	607	5447	635	5213
521	6893	554	5468	586	6090	609	5829	636	4225
522	7109	557	7701	587	7137	610	5131	637	5692
desviación estándar	1061.53		1088.88		1007.16		1282.11		1135.72
promedio	6005.15		5716.65		5622.15		6371.75		5336.05
3σ	3184.58		3266.64		3021.48		3846.32		3407.15
+	9189.73		8983.29		8643.63		10218.07		8743.20
-	2820.57		2450.01		2600.67		2525.43		1928.90

Tabla 3.1. Calibración de Cero Dosis.

26

G

código	cuenta cero	código	cuenta cero	código	cuenta cero	código	cuenta cero	código	cuenta cero
638	5480	660	5002	680	9310	711	6427	737	5946
639	4146	661	5632	683	6729	712	7178	738	6282
640	7709	662	5889	684	5591	713	6222	739	6700
641	4357	663	5985	686	5188	714	6790	740	6353
643	5324	664	5258	689	5425	715	5907	741	5816
644	4480	665	5962	690	6304	716	7030	742	4926
645	4511	666	4246	691	5015	718	6619	743	7167
646	6493	667	5350	692	6421	720	5087	744	4271
647	6081	668	6535	693	5695	721	6462	745	5907
648	5423	669	3804	694	7712	722	5829	746	6812
649	5425	670	5519	695	5516	723	6115	748	4966
651	4124	671	5080	697	6030	724	7233	749	7627
652	6840	672	4103	698	5290	726	6899	751	6266
653	5734	673	6115	699	7330	727	7773	752	6300
654	4775	674	5742	700	5774	728	6390	753	5768
655	6009	675	8582	701	7215	729	7341	754	6033
656	5939	676	5144	703	6034	730	5766	755	6139
657	6095	677	6909	705	5810	731	6519	756	6614
658	7702	678	4740	706	5670	732	8574	757	8730
659	5452	679	5120	707	6256	735	7023		
desviación estándar	1054.08		1059.76		1031.73		778.43		987.70
promedio	5604.95		5535.85		6215.75		6659.20		6243.32
3σ	3162.23		3179.29		3095.19		2335.30		2963.11
+	8767.18		8715.14		9310.94		8994.50		9206.42
-	2442.72		2356.56		3120.56		4323.90		3280.21

Tabla 3.2 calibración dosis cero.

9.5.2.3. Calibración individual

Se tomó el lote dosímetros previamente puestos en cero, utilizando el irradiador de mesa RadPro IR-200, se irradian los dosímetros a 5 vueltas, 24 horas después de la irradiación se leen y los resultados se asignarán a calibración del cristal y se ejecutara la calibración de la sensibilidad individual del cristal, los datos obtenidos se encuentran entre 0,8 y 1,20. En la tabla 4.1 y 4.2 se muestran los dosímetros que se utilizaron para la calibración individual.

	Sensibilidad		Sensibilidad		Sensibilidad		Sensibilidad
Código	individual.	Código	individual.	Código	individual.	Código	individual.
501	1.054	539	0.979	584	0.997	619	0.979
503	1.02	542	1.034	586	1.024	620	1.034
505	0.993	547	0.987	588	1.011	621	1.018
506	0.965	548	0.95	589	0.986	622	0.98
507	1.026	550	1.043	590	1.004	623	0.972
509	0.989	551	1.014	591	0.983	627	0.979
510	1.053	552	0.946	593	1.004	629	0.995
511	1.058	554	0.983	595	1.012	630	1.069
512	1.002	558	1.081	596	1.019	631	1.012
513	1.029	560	0.964	597	0.971	632	0.982
514	1.087	563	0.96	598	0.988	633	0.969
515	1.004	564	1.037	599	1.025	634	1.009
516	1.051	565	0.94	600	1.008	635	1.079
518	1.013	566	1.06	601	0.993	636	1.047
519	1.002	567	0.99	602	1.065	637	1.255
520	1.043	568	1.052	603	0.94	639	1.029
521	1.00	569	1.029	604	0.97	640	1.003
523	1.02	570	1.014	605	1.07	641	1.003
527	1.11	571	1.025	606	1.041	643	0.951
528	0.99	573	0.965	607	0.986	644	1.009
529	1.02	575	1.027	609	1.017	645	1.062
531	0.962	577	0.983	611	1.017	646	1.055
532	0.992	579	0.958	612	1.007	647	0.989
535	0.992	582	1.096	616	0.976	648	1.014
537	0.939	583	1.075	618	0.964	649	1.034

Tabla 4.1 Dosímetros de calibración sensibilidad individual.

	Sensibilida				Sensibilid		
Cáilinn	d	Código	Sensibilidad	Cádian	ad	Cádia a	Sensibilidad
Codigo	individual.		individual.	Coalgo	individual	Coalgo	individual.
651	1.073	684	0.972	748	0.989	737	1.002
652	1.001	686	1.02	749	0.961		
653	1.093	689	1.041	751	1.025		
654	1.057	690	1.01	752	1.006		
655	1.004	691	1.021	753	1.025		
656	1.025	692	1.048	754	0.966		
657	1.03	693	1.074	755	0.988		
658	0.975	694	0.769	711	1.056		
661	0.98	695	0.933	712	1.038		
662	0.976	697	0.96	713	1.006		
663	1.03	698	1.009	714	1.007		
664	1.02	699	0.99	715	0.982		
666	1.024	700	1.007	716	1.016		
667	1.02	701	1.042	718	1.017		
669	1.024	703	0.987	720	1.035		
670	0.992	705	1.008	721	1.026		
671	1.058	738	1.004	722	0.997		
672	0.998	739	1.043	723	1.015		
674	0.943	740	0.962	724	0.968		
675	1.036	741	0.99	726	0.995		
676	1.071	742	1.001	727	0.957		
677	1.017	743	0.945	728	0.994		
678	1.023	744	0.97	729	1.006		
680	0.919	745	0.927	730	0.933		
683	0.998	746	1.012	731	0.971		

Tabla 4.2 Dosímetros de calibración sensibilidad individual.

El promedio de la sensibilidad de cristal fue de 1.04 y su desviación estándar fue de 0.04.

D

9.5.2.4. Caracterización de la sensibilidad del lector.

La sensibilidad del lector se calibró con un lote de 10 dosímetros, con caracterización completa, se irradiaron en el irradiador de mesa a 5 vueltas. Las lecturas obtenidas se leyeron 24 horas pos irradiación se seleccionan y asignan a calibración de sensibilidad del lector.

En la tabla 5 se muestra la cantidad seleccionada de 10 dosímetros, de la cual se obtuvo el Reader para la sensibilidad del lector.

Códigos de Dosímetros
716
718
720
721
722
723
724
726
728
729

Tabla 5 Dosímetros Seleccionados para la sensibilidad del lector.

La calibración del Reader se realizó periódicamente, en la tabla 6 se muestran los valores nuevos y previos del Reader.

N°	Fecha	Nuevo	Previo
1	06/10/2021	54000	50822
2	13/10/2021	50611	54000
3	21/10/2021	49496	50611
4	12/11/2021	52519	49496

Tabla 6. Obtención de Reader para la magnitud ambiental.

9.5.2.5 Calibración del factor del sistema dosimétrico.

Los dosímetros previamente caracterizados se dividieron en dos grupos de 10 dosímetros cada uno, un grupo se irradió a una dosis de 10 mSv con una fuente de 137Cs, al aire libre con una lámina de acrílico de 3mm. (ver fig.9). Realizado por el equipo del LCD para llevar a cabo la irradiación. Se dejó el otro grupo de dosímetros sin irradiar y se utilizaron para fondo. Después de 24 horas, se leyeron los dosímetros irradiados a 10 mSv y se asignaron a calibración de Dosímetros de dosis estándar, siguiendo el procedimiento de calibración del sistema LDE-IT-06 las lecturas de los dosímetros de fondo se asignan en dosímetros de fondo de transporte. En la tabla 7 y 8 se muestra los resultados de este procedimiento.

			Dosímetros irradiados en fuente		
	Dosimetros irra	adiados en LCD	Ιος	al	
Código	Cuentas	dosis cero	cuentas	cero dosis	
715	1512268	5907	494309	5907	
714	1549203	6790	512117	6790	
713	1599344	6222	520629	6222	
712	1638337	7178	528307	7178	
711	1668537	6427	543017	6427	
705	1652382	5810	534910	5810	
703	1578727	6034	512299	6034	
701	1714523	7215	563225	7215	
700	1692097	5774	555999	5774	
699	1609438	7330	520607	7330	
697	1571943	6030	513173	6030	
695	1509560	5516	495261	5516	
693	1720760	5695	566764	5695	
692	1665265	6421	535704	6421	
691	1628700	5015	519658	5015	
690	1635495	6304	536258	6304	
689	1708223	5425	550481	5425	
686	1611801	5188	520441	5188	
684	1547769	5591	499564	5591	

Tabla 7 Dosimetros	Irradiados e	nellCDve	en el irradiado	or de mesa
	muuuuuu u			

Tabla 8. Resultados estadísticos de la lectura.

		Coeficiente
Promedio	Desviación	de
Cuentas	Estándar.	Variación.

31

Irradiados LCD	1621809	63562.13	3.9192
Irradiados LDE	6098526	671.91	11.0176

9.5.2.5.1 Verificación de la calibración del sistema dosimétrico mediante linealidad.

Con el Objetivo de verificar que el nuevo factor encontrado para la calibración del sistema, se tomó un lote de 30 dosímetros y se dividieron en grupos de 6, posteriormente se realizaron una serie de irradiaciones en el irradiador local de mesa a distintas vueltas (1, 3, 7, 8,10 y 15), para verificar la linealidad de la dosis obtenida según el número de vueltas.

En la tabla 9 se muestran los códigos de los grupos de dosímetros seleccionados para la verificación de la calibración del sistema dosimétrico,

Grupo	Códigos	Cuentas	Grupo	Códigos	Cuentas
	659	58523		748	427891
	679	61735		751	427753
1	707	62326	4	752	450295
	730	61180		753	458405
	731	58926		754	435539
	735	162429		698	551382
	737	132208		699	542965
2	738	168614	5	701	582582
	739	126028		703	529238
	740	159873		705	536439
	741	372300		711	834686
	742	376448		712	805701
3	743	375529	6	713	797147
	745	388728		714	776503
	746	380040		715	771411

Tabla 9. Códigos y cuentas de los dosímetros.

9.5.2.6. Irradiación de Dosímetros en el LCD.

En la siguiente imagen se muestra el montaje realizado para la irradiación de dosímetros, los cuales fueron irradiados con una fuente de referencia de ¹³⁷Cs en el LCD. Este procedimiento se realiza bajo la norma ISO 4037-3:2019 la cual establece diversos parámetros como la distancia entre los dosímetros, el factor de conversión, la tasa de Kerma, en este caso se realiza para la magnitud H*(10).

Como se puede observar en la imagen los dosímetros están colocados en un poroplast lo que significa que fueron irradiados a una geometría de 0° en aire por lo que son dosímetros ambientales, la distancia que tenían los dosímetros de la fuente fue de 2,5 m. Se puede observar una lámina que cubre los dosímetros, esta es de acrílico y tiene un grosor de 3mm esto para el equilibrio electrónico, el tiempo de exposición varía conforme a la dosis a irradiar.

Figura 9.Montaje de irradiación de dosímetros con la fuente de referencia ¹³⁷Cs en el LCD del LAF-RAM. Fuente: propia.

9.5.2.7 Pruebas tipo

La metodología empleada en cada una de las pruebas se describe al detalle a continuación:

9.5.2.7.1 Coeficiente de variación

El Coeficiente de Variación es una medida que permite el análisis de dispersión de la respuesta del conjunto dosimétrico, que se realiza en conjunto con el ensayo relativo a la no linealidad, para ello se considera las fluctuaciones estadísticas del valor indicado que deberán cumplir los siguientes requisitos:

Para H<0,1 mSv 15% Ec.4 Rango 0,1mSv \leq H< 0.5 mSv $(18 - \frac{3H}{0.1 mSv})$ % Ec.5 0,5mSv \leq H \leq 20 mSv 3%. Ec.6 Para H>20 mSv 5%. Ec.7

Las ecuaciones anteriores fueron tomadas de (IEC.62387, 2012).

9.5.2.7.2 No Linealidad.

En esta prueba se tomaron 60 dosímetros previamente puestos en cero, se procedió a irradiar en grupos de 10 dosímetros en el LCD con una fuente de referencia ¹³⁷Cs a 3, 0,1; 0.3; 1; 10 y 30 mSv respectivamente, estos dosímetros fueron leídos 24 horas post irradiación, las lecturas obtenidas se recolectó de la base de datos para posteriormente ser procesadas y verificar el cumplimiento según la IEC 62387:2012.

Rango 0,1mSv \leq H <0.5 mSv Ec. 8 Rango 0.5mSv \leq H \leq 20 mSv Ec.9 Rango 20*mSv*< H \leq 1 Sv Ec.10

Para H<0,1 mSv y arriba de 0,1 mSv aplica: -9% a + 11% y ± 5%

Para *H*> 1Sv aplica: -9% *a* + 11%

$$0,91 - U_{C,com} \le \left(\frac{-G_i}{G_{r,0}} \pm U_{com}\right) \cdot \frac{C_{r,0}}{C_i} \le 1,11 + U_{C,com} \ Ec.11$$
$$0,95 - U_{C,com} \le \left(\frac{-G_i}{G_{r,0}} \pm U_{com}\right) \cdot \frac{C_{r,0}}{C_i} \le 1,05 + U_{C,com} \ Ec.12$$

Donde: $U_{r,0} y G_r$ son los valores de referencia de los dosímetros irradiados a una dosis conocida; $U_i y G_i$ son los valores de dosis calculada.

$$U_{com} = \frac{\overline{G_1}}{\overline{G}_{r,0}} \cdot \sqrt{\left(\frac{U_1}{\overline{G}_1}\right)^2 + \left(\frac{U_{r,0}}{\overline{G}_{r,0}}\right)^2} \text{ Ec.13}$$

$$\left(\frac{\overline{G_1}}{\overline{G_{r,0}}} + U_{com}\right) \cdot \frac{C_{r,0}}{C_1} \quad \text{Ec.14}$$
$$U_{C,com} = \sqrt{U_{C,rel;r,0}^2 + U_{C,rel;1}^2} \quad \text{Ec.15}$$

Donde: U_{com} es la incertidumbre ampliada de una cantidad combinada.

 $U_{C,com}$ Es la incertidumbre ampliada de una cantidad combinada de valores verdaderos convencionales.

 $U_{C,rel}$ Es la incertidumbre relativa expandida del valor verdadero convencional.

 G_1 Promedio medido.

 $G_{r,0}$ Valor de referencia.

 C_1 Valor de dosis real convencional.

Las ecuaciones anteriores fueron tomadas de (IEC.62387, 2012).

Utilizando la ec.12 se realizó el cálculo de la dosis esperada en los 6 grupos de dosímetros, los cuales se irradiaron a distintas dosis (*3, 0,1; 0.3; 1; 10 y 30 mSv*). Se muestran los grupos en las tablas 10,11,12,13,14 y 15

Tabla	10.Valores	de la dosis	s H*(10)) esperada pa	ra 3mSv	(Grupo d	le Referencia).
-------	------------	-------------	----------	---------------	---------	----------	-----------------

código	cuentas	calibración dosis cero	factor del lector	calibración sensibilidad individual	factor del sistema	H*(10) calculada [uSv]	H*(10) calculada [mSv]	RESPUESTA
604	511240	5743	49495.94	0.96	322.69	3398	3.40	1.13
602	557436	4552	49495.94	1.06	322.69	3385	3.39	1.13
601	514679	6805	49495.94	0.99	322.69	3334	3.33	1.11
599	556339	4818	49495.94	1.02	322.69	3506	3.51	1.17
598	504951	7040	49495.94	0.98	322.69	3284	3.28	1.09
596	532754	6439	49495.94	1.01	322.69	3367	3.37	1.12
595	523039	5502	49495.94	1.01	322.69	3332	3.33	1.11
512	502903	5231	49495.94	1.00	322.69	3236	3.24	1.08
510	525824	5189	49495.94	1.05	322.69	3224	3.22	1.07
509	491022	6361	49495.94	0.98	322.69	3195	3.20	1.07
						PROMEDIO	3.33	1.11
						DESVT	0.09	0.03

COV

2.84

2.84

código	cuentas	calibración dosis cero	factor del lector	calibración sensibilidad individual	factor del sistema	H*(10) calculada [uSv]	H*(10) calculada [mSv]	H*(10) corregida	RESPUESTA
754	26369	6033	53999.5	0.96	322.69	125.75	0.13	0.11	1.10
753	25069	5768	53999.5	1.02	322.69	112.57	0.11	0.10	0.97
752	26207	6300	53999.5	1.01	322.69	118.25	0.12	0.10	1.02
751	22435	6266	53999.5	1.02	322.69	94.24	0.09	0.08	0.78
748	25120	4966	53999.5	0.98	322.69	121.73	0.12	0.11	1.06
746	24979	6812	53999.5	1.01	322.69	107.27	0.11	0.09	0.91
745	25078	5907	53999.5	0.92	322.69	123.58	0.12	0.11	1.08
743	23059	7167	53999.5	0.94	322.69	100.52	0.10	0.08	0.84
742	24969	4926	53999.5	1.00	322.69	119.68	0.12	0.10	1.04
741	24552	5816	53999.5	0.99	322.69	113.09	0.11	0.10	0.97
						PROMEDIO	0.11	0.10	0.98
						DESVT	0.01	0.01	0.10
						COV	9.08	10.58	10.58

Tabla 11.valores de la dosis $H^*(10)$ esperada para 0,1mSv.

Tabla 12. valores de la dosis $H^*(10)$ esperada para 0,3mSv.

código	cuentas	calibración dosis cero	factor del lector	Calibración sensibilidad individual	factor del sistema	H*(10) calculada [uSv]	H*(10) calculada [mSv]	H*(10) corregida	RESPUESTA
715	56097	5907	53999.5	0.98	322.69	305.34	0.31	0.28	0.94
714	56153	6790	53999.5	1.00	322.69	292.91	0.29	0.27	0.90
713	58820	6222	53999.5	1.01	322.69	312.32	0.31	0.29	0.97
712	60549	7178	53999.5	1.04	322.69	307.12	0.31	0.29	0.95
711	58194	6427	53999.5	1.05	322.69	292.91	0.29	0.27	0.90
705	57232	5810	53999.5	1.00	322.69	304.99	0.30	0.28	0.94
703	58591	6034	53999.5	0.98	322.69	318.11	0.32	0.30	0.99
701	66063	7215	53999.5	1.04	322.69	337.37	0.34	0.32	1.05
699	65075	7330	53999.5	0.99	322.69	348.52	0.35	0.33	1.09
698	59396	5290	53999.5	1.00	322.69	320.43	0.32	0.30	0.99
						PROMEDIO	0.31	0.29	0.97
						DESVT	0.02	0.02	0.06
						COV	5.71	6.14	6.14

código	cuentas	calibración dosis cero	factor del lector	calibración sensibilidad individual	factor del sistema	H*(10) calculada [uSv]	H*(10) calculada [mSv]	H*(10) corregida	RESPUESTA
715	168454	5907	49495.94	0.98	322.69	1078.85	1.08	1.07	1.07
714	171209	6790	49495.94	1.00	322.69	1064.41	1.06	1.06	1.06
713	174736	6222	49495.94	1.00	322.69	1091.67	1.09	1.08	1.08
712	179367	7178	49495.94	1.03	322.69	1081.02	1.08	1.07	1.07
711	183887	6427	49495.94	1.05	322.69	1095.48	1.10	1.09	1.09
705	179733	5810	49495.94	1.00	322.69	1125.43	1.13	1.12	1.12
703	173243	6034	49495.94	0.98	322.69	1104.15	1.10	1.10	1.10
701	189523	7215	49495.94	1.04	322.69	1140.25	1.14	1.13	1.13
699	181006	7330	49495.94	0.99	322.69	1143.59	1.14	1.14	1.14
698	177366	5290	49495.94	1.00	322.69	1111.81	1.11	1.10	1.10
						PROMEDIO	1.10	1.10	1.10
						DESVT	0.03	0.03	0.03
						COV	2.41	2.42	2.73

Tabla 13. valores de la dosis $H^*(10)$ esperada para 1mSv.

Tabla 14. valores de la dosis $H^*(10)$ esperada para 10 mSv.

Código	cuentas	calibración dosis cero	factor del lector	calibración sensibilidad individual	factor del sistema	H*(10) calculada [uSv]	H*(10) calculada [mSv]	RESPUESTA
697	1613319	6030	50610.74	0.96	322.69	10673.63	10.67	1.07
695	1548306	5516	50610.74	0.93	322.69	10545.97	10.55	1.05
693	1766697	5695	50610.74	1.07	322.69	10453.56	10.45	1.05
692	1689747	6421	50610.74	1.04	322.69	10246.08	10.25	1.02
691	1646529	5015	50610.74	1.02	322.69	10254.93	10.25	1.03
507	1713313	5721	50610.74	1.02	322.69	10613.15	10.61	1.06
506	1610063	4995	50610.74	0.96	322.69	10608.62	10.61	1.06
505	1587917	4911	50610.74	0.99	322.69	10161.69	10.16	1.02
503	1684090	5992	50610.74	1.01	322.69	10494.98	10.49	1.05
501	1751466	5566	50610.74	1.05	322.69	10563.58	10.56	1.06
						PROMEDIO	10.46	1.05
						DESVT	0.18	0.02
						COV	1.71	1.71

código	cuentas	calibración dosis cero	factor del lector	calibración sensibilidad individual	factor del sistema	H*(10) calculada [uSv]	H*(10) calculada [mSv]	RESPUESTA
604	4904042	5743	50610.74	0.96	322.69	32204.67	32.20	1.07
601	4890995	6805	50610.74	0.99	322.69	31364.20	31.36	1.05
599	5284769	4818	50610.74	1.02	322.69	32828.68	32.83	1.09
598	4835417	7040	50610.74	0.98	322.69	31146.27	31.15	1.04
602	5413956	4552	50610.74	1.06	322.69	32389.40	32.39	1.08
509	4837901	6361	50610.74	0.98	322.69	31154.76	31.15	1.04
596	5150031	6439	50610.74	1.01	322.69	32188.99	32.19	1.07
510	5130992	5189	50610.74	1.05	322.69	31044.20	31.04	1.03
512	4958531	5231	50610.74	1.00	322.69	31505.69	31.51	1.05
595	5123367	5502	50610.74	1.01	322.69	32230.65	32.23	1.07
						PROMEDIO	31.81	1.06
						DESVT	0.63	0.02
						COV	1.99	1.99

Tabla 15. valores de la dosis $H^*(10)$ esperada para 30mSv.

9.5.2.7.2 Fading

El fading es el proceso por medio del cual la información latente (respuesta) de un detector se pierde de manera involuntaria primordialmente debido a factores térmicos. La pérdida de información se verifica a través de esta prueba la cual tiene como magnitud de influencia el tiempo, considerándose como influencia de tipo F y tipo S. (L.Peterson,Paulo Márcio,C.Oliveira, 2007).

Magnitud de influencia tipo F: magnitud de influencia cuyo efecto en el valor indicado es un cambio en la respuesta.

Magnitud de influencia tipo S: magnitud de influencia cuyo efecto sobre el valor indicado es una desviación independiente del valor indicado.

Para identificar que magnitud se encuentran en cada grupo se utilizaron las siguientes ecuaciones para verificar si cumplen con los requisitos de la IEC 62387:2012.

$$r_{min} \leq \left(\overline{\frac{G'_1}{G'_2}} \pm U_{com}\right) \leq r_{max} \text{ [Tipo F] Ec.16}$$
$$\left|\overline{\frac{G'_1}{G'_1}} - \overline{\frac{G'_2}{G'_2}} \pm U_{com}\right| \leq D_{max} \text{ [Tipo S] } Ec.17$$

38

$$\begin{aligned} r_{min} &\leq \left(\overline{\frac{7.G'_1}{G'_2}} \pm U_{com} \right) \leq r_{max} \text{ [Tipo F] } \textit{Ec. 18} \\ \left| \overline{7.G'_4} - \overline{G'_2} \pm U_{com} \right| \leq D_{max} \text{ [Tipo S] } \textit{Ec. 19} \\ -H_{low} \leq \overline{G_8} \pm U_m - C_{nat} \leq +H_{low} \textit{Ec. 20} \end{aligned}$$

Donde: *U_{com}* es la incertidumbre ampliada de una cantidad combinada.

 r_{min} : Valor mínimo permitido de la respuesta relativa debido a una magnitud de influencia.

 r_{max} : Valor máximo permitido de la respuesta relativa debido a una magnitud de influencia

 U_m : Incertidumbre ampliada.

Hlow: Límite de dosis inferior del rango de medición.

 C_{nat} : Valor real convencional de la dosis equivalente de radiación natural durante el almacenamiento para el tiempo de medición máximo nominal, tmax.

Las ecuaciones anteriores fueron tomadas de (IEC.62387, 2012).

En esta prueba se seleccionó un lote de 98 dosímetros y se dividen en 8 grupos los cuales tuvieron el siguiente tratamiento:

Los grupos 1 a 3 que constan de 8 dosímetros se expusieron (a radiación) a una fuente de referencia a 0,7mSv. El grupo 4 que consta de 25 dosímetros se expuso a 0,1mSv. Los grupos 5 a 7 que constan de 8 dosímetros y grupo 8 que consta de 25 dosímetros no se expusieron.

Los grupos 1 y 5 se leyeron 1 día después de la irradiación.

Los grupos 2 y 6 (grupos de referencia) se leyeron una semana después de la irradiación. Los grupos 3, 4, 7 y 8 se leyeron después del tiempo de medición máximo *tmax* de 1 mes. Este tratamiento es indicado por LDE-IT-06.

El fading, significa la disminución ó pérdida de la respuesta TL de un material en función del tiempo después de la irradiación. (J.Garcia, 2017). Por lo que en las siguientes tablas se muestran los grupos que se expusieron y los que no. También se muestra a que tiempo fueron leídos (Leídos un día, una semana posterior a la irradiación y leídos 1 mes posterior). En las tablas 16,17,18,19,20,21,22 y 23 se muestran los datos de todos los grupos antes mencionados.

	GRUPO 1								
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]		
512	116349	5231	50822.45	1.00	50822.45	322.69	0.70		
510	122458	5189	50822.45	1.052	50822.45	322.69	0.70		
509	116511	6361	50822.45	0.98	50822.45	322.69	0.70		
507	124776	5721	50822.45	1.02	50822.45	322.69	0.73		
506	116735	4995	50822.45	0.96	50822.45	322.69	0.73		
505	114334	4911	50822.45	0.99	50822.45	322.69	0.69		
503	120738	5992	50822.45	1.01	50822.45	322.69	0.71		
501	125010	5566	50822.45	1.05	50822.45	322.69	0.72		
						PROMEDIO	0.71		
						DESVEST	0.01		
						COV	1.98		

Tabla 16. Valores del grupo 1 (grupo expuesto) leídos un día después.

Tabla 17. Valores del grupo 5 (no expuesto) leídos un día después.

GRUPO 5								
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]	
605	12227	6778	50822.45	1.07	50822.45	322.69	0.03	
604	7338	5743	50822.45	0.96	50822.45	322.69	0.01	
602	9429	4552	50822.45	1.06	50822.45	322.69	0.02	
601	9548	6805	50822.45	0.99	50822.45	322.69	0.01	
599	8253	4818	50822.45	1.02	50822.45	322.69	0.02	
598	10753	7040	50822.45	0.98	50822.45	322.69	0.02	
596	7853	6439	50822.45	1.01	50822.45	322.69	0.00	
595	8098	5502	50822.45	1.01	50822.45	322.69	0.01	
						PROMEDIO	0.02	
						DESVEST	0.01	
						COV	42	

9

B

	GRUPO 2								
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]		
523	108968	4501	53999.5	1.02	50822.45	322.69	0.61		
521	111452	6893	53999.5	1.00	50822.45	322.69	0.62		
520	114617	5658	53999.5	1.04	50822.45	322.69	0.62		
519	109958	7452	53999.5	1.00	50822.45	322.69	0.61		
518	110348	6142	53999.5	1.01	50822.45	322.69	0.61		
516	115579	7252	53999.5	1.05	50822.45	322.69	0.61		
515	109501	5558	53999.5	1.00	50822.45	322.69	0.61		
513	111869	6088	53999.5	1.02	50822.45	322.69	0.61		
						PROMEDIO	0.61		
						DESVEST	0.00		
						COV	0.79		

Tabla 18. Valores del grupo 2 (expuesto) leídos una semana después.

Tabla 19. Valores del grupo 6 (no expuesto) leídos una semana después.

GRUPO 6								
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]	
623	13451	6332	53999.5	0.97	50822.45	322.69	0.04	
621	7890	4643	53999.5	1.01	50822.45	322.69	0.01	
619	8707	4785	53999.5	0.97	50822.45	322.69	0.02	
616	9876	5744	53999.5	0.97	50822.45	322.69	0.02	
612	9976	6853	53999.5	1.01	50822.45	322.69	0.01	
609	9975	5829	53999.5	1.01	50822.45	322.69	0.02	
607	10197	5447	53999.5	0.98	50822.45	322.69	0.02	
606	12135	5522	53999.5	1.04	50822.45	322.69	0.03	
						PROMEDIO	0.02	
						DESVEST	0.01	
						COV	32	

	GRUPO 3									
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]			
523	108968	4501	53999.5	1.02	50822.45	322.69	0.61			
521	111452	6893	53999.5	1.00	50822.45	322.69	0.62			
520	114617	5658	53999.5	1.04	50822.45	322.69	0.62			
519	109958	7452	53999.5	1.00	50822.45	322.69	0.61			
518	110348	6142	53999.5	1.01	50822.45	322.69	0.61			
516	115579	7252	53999.5	1.05	50822.45	322.69	0.61			
515	109501	5558	53999.5	1.00	50822.45	322.69	0.61			
513	111869	6088	53999.5	1.02	50822.45	322.69	0.61			
						promedio	0.61			
						desvest	0.00			
						COV	0.73			

Tabla 20. Valores del grupo 3 (expuesto) leídos un mes después.

Tabla 21. Valores del grupo 7 (no expuesto) leídos un mes después.

GRUPO 7									
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]		
638	15074	5480	52518.74	0.99	50822.45	322.69	0.05		
635	17742	5213	52518.74	1.07	50822.45	322.69	0.07		
633	15557	6581	52518.74	0.96	50822.45	322.69	0.05		
632	16265	6305	52518.74	0.98	50822.45	322.69	0.06		
631	13222	4594	52518.74	1.01	50822.45	322.69	0.05		
629	14469	4571	52518.74	0.99	50822.45	322.69	0.06		
627	13873	4680	52518.74	0.97	50822.45	322.69	0.05		
606	12135	5522	53999.5	1.04	50822.45	322.69	0.037		
						promedio	0.05		
						desvest	0.01		
						COV	15.56		

GRUPO 4								
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	CalReaderECC	factor del sistema	H*(10) calculada [mSv]	
593	28747	6250	52518.74	1.00	50822.45	322.69	0.13	
591	27890	4816	52518.74	0.98	50822.45	322.69	0.14	
588	27332	5862	52518.74	1.01	50822.45	322.69	0.13	
586	29967	6090	52518.74	1.02	50822.45	322.69	0.14	
583	29559	4638	52518.74	1.07	50822.45	322.69	0.14	
579	29325	5752	52518.74	0.95	50822.45	322.69	0.15	
577	27832	5120	52518.74	0.98	50822.45	322.69	0.14	
575	28828	5520	52518.74	1.02	50822.45	322.69	0.13	
573	27066	4781	52518.74	0.96	50822.45	322.69	0.14	
571	29738	5136	52518.74	1.02	50822.45	322.69	0.14	
570	30516	5474	52518.74	1.01	50822.45	322.69	0.15	
569	30279	5837	52518.74	1.02	50822.45	322.69	0.14	
568	29632	5733	52518.74	1.05	50822.45	322.69	0.13	
567	30723	5783	52518.74	0.99	50822.45	322.69	0.15	
565	27635	5207	52518.74	0.93	50822.45	322.69	0.14	
564	29692	5304	52518.74	1.03	50822.45	322.69	0.14	
563	28131	5984	52518.74	0.95	50822.45	322.69	0.14	
560	29501	6858	52518.74	0.96	50822.45	322.69	0.14	
558	32771	5349	52518.74	1.08	50822.45	322.69	0.15	
554	30853	5468	52518.74	0.98	50822.45	322.69	0.15	
552	28611	7946	52518.74	0.94	50822.45	322.69	0.13	
551	30367	5394	52518.74	1.01	50822.45	322.69	0.15	
550	28796	6111	52518.74	1.04	50822.45	322.69	0.13	
548	31313	7072	52518.74	0.94	50822.45	322.69	0.15	
547	29216	5054	52518.74	0.98	50822.45	322.69	0.15	
						PROMEDIO	0.14	
						DESVEST	0.01	
						COV	7.44	

Tabla 22. Valores del grupo 4 (expuesto) leídos un mes después.

GRUPO 8								
Código	Cuentas	Calibración dosis cero	factor del lector	calibración sensibilidad individual	Calibración del lector	factor del sistema	H*(10) calculada [mSv]	
683	16090	6729	52518.74	0.99	50822.45	322.69	0.05	
678	14267	4740	52518.74	1.02	50822.45	322.69	0.05	
677	15658	6909	52518.74	1.01	50822.45	322.69	0.05	
676	16686	5144	52518.74	1.07	50822.45	322.69	0.06	
674	12320	5742	52518.74	0.94	50822.45	322.69	0.04	
673	16785	6115	52518.74	1.06	50822.45	322.69	0.06	
671	14590	5080	52518.74	1.05	50822.45	322.69	0.05	
670	16522	5519	52518.74	0.99	50822.45	322.69	0.06	
667	14269	5350	52518.74	1.01	50822.45	322.69	0.05	
664	15218	5258	52518.74	1.02	50822.45	322.69	0.05	
663	18111	5985	52518.74	1.02	50822.45	322.69	0.07	
662	15021	5889	52518.74	0.97	50822.45	322.69	0.05	
661	14792	5632	52518.74	0.97	50822.45	322.69	0.05	
657	15997	6095	52518.74	1.03	50822.45	322.69	0.05	
656	16790	5939	52518.74	1.02	50822.45	322.69	0.06	
655	15428	6009	52518.74	1.00	50822.45	322.69	0.05	
654	15056	4775	52518.74	1.05	50822.45	322.69	0.05	
653	17159	5734	52518.74	1.09	50822.45	322.69	0.06	
652	15528	6840	52518.74	1.00	50822.45	322.69	0.05	
649	18360	5425	52518.74	1.03	50822.45	322.69	0.07	
648	15888	5423	52518.74	1.01	50822.45	322.69	0.06	
647	15479	6081	52518.74	0.98	50822.45	322.69	0.05	
646	17580	6493	52518.74	1.05	50822.45	322.69	0.06	
645	16223	4511	52518.74	1.06	50822.45	322.69	0.06	
643	14461	5324	52518.74	0.95	50822.45	322.69	0.05	
						PROMEDIO	0.06	
						DESVEST	0.01	
						COV	19.40	

Tabla 23. Valores del grupo 1 (no expuesto) leídos un mes después.

9.5.2.7.3. Prueba de Verificación.

Las pruebas de verificación (también conocidas como pruebas de calidad) pueden incluir: probar los equipos bajo condiciones que simulen las de operación real, para ver si siguen los estándares apropiados y desempeñan las funciones esperadas (Ace, 2021). En esta prueba se utilizaron los mismos dosímetros de la prueba de coeficiente de variación tomando los promedios de las dosis.

El propósito de esta prueba es para verificar que en caso que el laboratorio LAFRAM participe en un ensayo de aptitud o Intercomparación con un laboratorio certificado, que para la magnitud H*(10) cumple con el requisito de la ISO 14146 para determinar los límites superior e inferior de esta prueba se utilizó la siguiente ecuación, cabe resaltar que esta ecuación aplica para ensayos de aptitud e intercomparaciones:

$$0.71 \left(1 - \frac{2H_0/1.33}{H_0/1.33 + H_P(d)v} \right) \le R \le 1.67 \left(1 + \frac{H_0}{4.H_0 + H_P(d)v} \right) \text{Ec.21}$$

Ecuación tomada de (ISO, 2018)

Donde: H_0 es el límite de registro de dosis.

 $H_{n(d)\nu}$ es el límite de registro de dosis.

10 Resultados

10.1 Calibración Dosis Cero.

Con respecto a la tabla 3.1 y 3.2 se realizó la siguiente grafica de calibración base (Dosis cero) para seleccionar los dosímetros que cumplen con el rango de exclusión. El rango que se tomo fue de 4500 a 7500 cuentas, esto porque los dosímetros son nuevos y se quiere ver la trazabilidad de las mediciones.

En el rango establecido de valores para dosis cero los valores son menos dispersos.

Figura 10. Gráfica de dosímetros vs cuentas. Se tomó un rango de 4500 a 7500 de cuentas los dosímetros que están concentrados entre esos rangos se utilizaron en esta prueba, los que están dispersos o pasaron los rangos fueron eliminados. Fuente: Propia.

10.2Calibración individual.

Con respecto a la tabla 4.1 y 4.2 se realizó la siguiente gráfica de calibración sensibilidad de cristal (sensibilidad individual) en este caso se observa menos dispersión que con la gráfica de cero dosis ya que para la sensibilidad individual el cristal TLD 100 es muy pequeña respecto a la dispersión que pueden tener otro tipo de cristales. Estos pueden variar en cada calibración, esta variación depende de la vida útil de dosímetro.

El rango de aceptación para sensibilidad individual se estableció según el valor de referencia que establece el LDE en sus procedimientos técnicos, ya que este valor es una relación entre un valor de dosis verdadero (dosis en fuente local) y un medido.

Figura 11. Gráfico de Dosímetros vs sensibilidad individual. Se tomó un rango de 0.8 a 1.02 de sensibilidad, los dosímetros que están concentrados entre esos rangos se utilizaron en esta prueba, los que están dispersos o pasaron los rangos fueron eliminados. Fuente: Propia.

10.3 Calibración del sistema dosimétrico.

En las tablas 24 y 25 se muestran los datos obtenidos de los dosímetros irradiados en el LDE y el LCD. Para obtener la dosis medida se utiliza la siguiente Ecuación presentada en el compendio del laboratorio LDE-IT-02 (LAFRAM, 2020):

H*(10) medida = (Cuentas brutas – dosis cero del Cristal) *factor de irradiador / (Sensibilidad lector* Sensibilidad Cristal). EC.14

Código de dosímetro	Cuentas	Calibración de dosis Cero	Calibración sensibilidad del lector	Calibración sensibilidad individual.	Factor del sistema	H*(10) esperada [mSv]	H*(10) medida [mSv]
715	494309	5907	50822.45	0.98	318.92	3	3.12
714	512117	6790	50822.45	1.00	318.92	3	3.15
713	520629	6222	50822.45	1.00	318.92	3	3.21
712	528307	7178	50822.45	1.03	318.92	3	3.15
711	543017	6427	50822.45	1.05	318.92	3	3.19
705	534910	5810	50822.45	1.00	318.92	3	3.30
703	512299	6034	50822.45	0.98	318.92	3	3.22
701	563225	7215	50822.45	1.04	318.92	3	3.35
700	555999	5774	50822.45	1.00	318.92	3	3.43
699	520607	7330	50822.45	0.99	318.92	3	3.25
697	513173	6030	50822.45	0.96	318.92	3	3.31
695	495261	5516	50822.45	0.93	318.92	3	3.29
693	566764	5695	50822.45	1.07	318.92	3	3.28
692	535704	6421	50822.45	1.04	318.92	3	3.17
691	519658	5015	50822.45	1.02	318.92	3	3.16
690	536258	6304	50822.45	1.01	318.92	3	3.29
689	550481	5425	50822.45	1.04	318.92	3	3.28
686	520441	5188	50822.45	1.02	318.92	3	3.17
684	499564	5591	50822.45	0.97	318.92	3	3.19
		-				PROMEDIO:	3.24

Tabla 24. Dosímetros Irradiados en la Fuente local.

3.24
0.08
2.51

G

Código de dosímetro	Cuentas	Calibración de dosis Cero	Calibración sensibilidad del lector	Calibración sensibilidad individual.	Factor del sistema	H*(10) esperada [mSv]	H*(10) medida [mSv]
715	1512268	5907	50822.45	0.98	318.92	10	9.62
714	1549203	6790	50822.45	1.00	318.92	10	9.61
713	1599344	6222	50822.45	1.00	318.92	10	9.93
712	1638337	7178	50822.45	1.03	318.92	10	9.86
711	1668537	6427	50822.45	1.05	318.92	10	9.88
705	1652382	5810	50822.45	1.00	318.92	10	10.26
703	1578727	6034	50822.45	0.98	318.926	10	10.00
701	1714523	7215	50822.45	1.04	318.92	10	10.28
700	1692097	5774	50822.45	1.00	318.92	10	10.51
699	1609438	7330	50822.45	0.99	318.92	10	10.15
697	1571943	6030	50822.45	0.96	318.92	10	10.23
695	1509560	5516	50822.45	0.93	318.92	10	10.12
693	1720760	5695	50822.45	1.07	318.92	10	10.02
692	1665265	6421	50822.45	1.04	318.92	10	9.94
691	1628700	5015	50822.45	1.02	318.92	10	9.98
690	1635495	6304	50822.45	1.01	318.92	10	10.12
689	1708223	5425	50822.45	1.041	318.92	10	10.26
686	1611801	5188	50822.45	1.02	318.92	10	9.88
684	1547769	5591	50822.45	0.97	318.92	10	9.95
						PROMEDIO	10.03
						DECV STAND	0.22

Tabla 25.	Dosímetros	irradiados en	el LCD.

 DESV.STAND
 0.23

 COV:
 2.24

49 49

Q

Una vez que los dosímetros fueron irradiados y leídos se buscan las lecturas en el software y se seleccionan los códigos de los dosímetros, y se le asigna calibración de Dosis del Sistema en Exposición Local (LDE-IT-06). En la figura 12 se muestra el nuevo factor de calibración del sistema dosimétrico para H*(10) dando como resultado un factor de 327,1 μ Sv/vueltas.

Update Irradiator Calibration						
Dosimeter type:	kerma en aire/ar	mbiental	A	LL DOSE UNITS ARE μSv	ОК	
Official reference dose:	Pos 1 10000	O Pos 2 O P	os 3 O F	Pos 4	Cancel	
⊂ Standard dose dosimet			dosimeters	1000	Skip	
Average dose:	10140.5	Background dose:	3.6			
Number of crystals:	20	Number of crystals:	10	Change over time:		
Minimum value:	9724.6	Minimum value:	-10.3			
Maximum value:	10633.1	Maximum value:	12.9			
Standard deviation:	226.0	Standard deviation:	6.0			
Local irradiator data —						
System exposure:	10	Half-life (days):	0			
Compensated exposure:	10.000	Days since system reference date (To):	4180			
Previous calibration:	318.9	Measurement date:	06/12/2018	Possible problems: W8011: Old reader cal. 28/09/20	21 for local	
- Locally exposed dosim	eters	<u> </u>		W8012: Old reader cal. 28/09/20	121 for reference	
Measured dose:	327.1	Number of crystals:	20			
Expected dose: (from previous cal.)	328.5	Minimum value:	315.7			
Difference (%)	-0.4	Maximum value:	346.9			
Compensated value: (new calibration)	322.7	Standard deviation:	8.2			

Figura 12. Nuevo factor de calibración. Fuente: propia.

10.4 Verificación de la calibración del sistema dosimétrico mediante linealidad.

Anteriormente en el inciso 9.5.2.5.1. Se describe la realización de esta prueba y en la tabla 9 se muestran los códigos de los dosímetros seleccionados para dicha prueba.

En la tabla 26 se muestran los resultados del promedio obtenido en las diferentes vueltas. Posteriormente se realizó la ilustración 12, donde se muestra la linealidad del sistema de calibración donde se verifico que dicho sistema se encontraba correctamente calibrado.

	Promedio
vueltas	cuentas
1	60538
3	149830.4
7	378609.0
8	439976.6
10	548521.2
15	797089.6

Tabla 26. vueltas y promedio de cuentas.

Figura 13.Linealidad de vueltas vs cuentas. Fuente: propia.

10.5 Coeficiente de Variación.

Esta prueba nos informa acerca de la dispersión relativa de un lote de dosímetros. Los resultados de la determinación del coeficiente de variación (COV) se observan en la tabla 27.

Dónde: **H** [**mSv**]: es la Dosis a la que se irradiaron los dosímetros y **COV**: es el Coeficiente de variación en un punto de dosis dado, el cual se obtiene como el cociente de la desviación estándar sobre la media aritmética $COV=(S/\overline{X})$.

H*(10) [mSv]	CoV (%)
0.1	10.6
0.3	6.1
1	2.4
3	2.8
10	1.71
30	1.42

Tabla 27 Resultados de la Prueba de CoV.

Los resultados obtenidos cumplen los requisitos establecidos en la norma IEC 62387:2012. En la figura 14, se observa que los coeficientes de variación encontrados para cada punto de dosis están dentro de la curva de referencia para todos los valores de dosis a los que fueron irradiados los dosímetros.

Cabe resaltar que los valores de COV más cercanos al límite de la norma fueron los de 1mSv y 3mSv con 2.4 % y 2.8% respectivamente.

Figura 14. Resultados del coeficiente de variación. Fuente: propia.

52

10.6 No Linealidad.

En la tabla 28 se observan los resultados de la prueba de no linealidad, donde los datos se calcularon mediante a la Ec.12, los términos de la tabla son los siguientes:

H*(10) [mSv]: Dosis a la que se irradiaron los dosímetros.

Ui: Incertidumbre expandida.

U_{com} Es la incertidumbre ampliada de una cantidad combinada

 $U_{C,com}$ Es la incertidumbre ampliada de una cantidad combinada de valores verdaderos convencionales.

 $U_{C,rel}$ Es la incertidumbre relativa expandida del valor verdadero convencional. **Rango:** son los límites superiores e inferiores.

R1: es la Razón.

r: es la respuesta y se conoce como el cociente entre el valor esperado y el valor convencionalmente verdadero.

H*(10) [mSv]	Ui	Ucom	Intervalo	R1	r	$U_{C,rel;r,0}^2$	$U^2_{C,rel;1}$	U _{C,com}
3	0.067							
			1.16			0.533	0.10	0.113
0.1	0.007	0.002	0.84	0.976	0.880			
			1.14			0.533	0.067	0.09
0.3	0.013	0.004	0.86	0.973	0.877			
			1.12			0.533	0.05	0.07
1	0.025	0.010	0.88	1.096	0.989			
			1.13			0.533	0.054	0.076
10	0.165	0.081	0.87	1.046	0.943			
			1.13			0.533	0.054	0.076
30	0.452	0.237	0.87	1.060	0.956			
$0,95 - U_{C,\text{com}} \leq \left(\frac{\overline{G_i}}{\overline{G_{r,0}}} \pm U_{\text{com}}\right) \cdot \frac{C_{r,0}}{C_i} \leq 1,05 + U_{C,\text{com}}$ $U_{C,\text{com}} = \sqrt{U_{C,\text{rel};r,0}^2 + U_{C,\text{rel};1}^2}$								

53

Tabla 28.Resultados de Prueba de No linealidad.

Basados en la norma IEC 62387:2012 en el requisito de la línea 7 de la tabla 11.

La dosis de irradiación que se tomó como referencia fue de 3 mSv

Encontrando los intervalos permitidos por la normativa para las dosis de:

- 0.1 mSv; los intervalos fueron de 0.84 ≤ 0.81 / 0.95 ≤ 1.16, para este valor de dosis <u>no se cumple el límite inferior</u>, según línea 7 tabla 11
- 0.3 mSv; los intervalos fueron de 0.86 ≤ 0.85 / 0.92 ≤ 1.14, para este valor de dosis no se cumple el límite inferior, según línea 7 tabla 11
- 1 mSv; los intervalos fueron de 0.88 ≤ 0.96 / 1.02 ≤ 1.12, por lo tanto, si se cumplió el requisito, según línea 7 tabla 11
- 10 mSv; los intervalos fueron de 0.87 ≤ 0.92 / 0.97 ≤ 1.13, por lo tanto, si se cumplió el requisito, según línea 7 tabla 11
- 30 mSv; los intervalos fueron de 0.87 ≤ 0.93 / 0.98 ≤ 1.13, por lo tanto, si se cumplió el requisito, según línea 7 tabla 11

10.7 Fading.

Los siguientes corchetes dentro de la tabla 29 representan la resta de grupos según lo indicado por la norma IEC 62387. Grupo Irradiado menos su grupo no irradiado. Haciendo así una relación de pérdida de información.

	$\left\{\overline{\mathbf{G}}_{\mathbf{J},1}-\overline{\mathbf{G}}_{5} ight\}$	$\left\{\overline{G}_{J,2}-\overline{G}_6\right\}$	$\left\{\overline{\mathbf{G}}_{\mathbf{J},3}-\overline{\mathbf{G}}_{7} ight\}$	$\left\{\overline{\mathbf{G}}_{\mathrm{J,4}}-\overline{\mathbf{G}}_{\mathrm{8}} ight\}$
	0.68	0.58	0.55	0.07
	0.68	0.59	0.56	0.08
	0.68	0.59	0.56	0.07
	0.71	0.58	0.55	0.08
	0.71	0.58	0.55	0.08
	0.68	0.58	0.55	0.09
	0.69	0.59	0.56	0.08
	0.70	0.58	0.55	0.08
				0.08
				0.08
				0.09
				0.08
				0.07
				0.09
				0.08
				0.08
				0.08
				0.08
				0.09
				0.09
				0.07
				0.09
				0.07
				0.09
				0.09
PROMEDIO	0.69	0.58	0.55	0.08
DESVEST	0.01	0.00	0.00	0.01
COV	COV 2.03 0.82 0.80		0.80	13.25

Tabla 29. Resultados del Fading.

Se comprobó que, para estos dosímetros, la pérdida de la señal termoluminiscente se considera aceptables al compararlos con los valores establecidos en la norma para tiempos posteriores a la irradiación de un día, una semana y un mes.

En el caso de los resultados encontrados para un periodo de un mes los dosímetros irradiados a 0,7 y a 0,1 mSv cumplen con el límite de la norma para la magnitud tipo F y S, sin embargo, en el caso del lote de dosímetros irradiados a 0,7 mSv en el periodo de un día y una semana no cumple con los límites establecidos por la Norma. Los valores se obtuvieron mediante las ecuaciones 16,17,18 y 19 del acápite 9.5.2.7.2.

- ✓ Grupo 1 Leído al siguiente día; 0.91 ≤ 1.15 / 1.21 ≤ 1.11; no cumple con los intervalos establecidos por la norma.
- ✓ Grupo 2 Leído una semana después; 0.079 / 0.13 ≤ 0.07; este grupo cumple con el límite inferior.
- ✓ Grupo 3 Leído un mes después; 0.91 ≤ 0.94 / 0.96 ≤ 1.11; este grupo cumple con los intervalos establecidos por la norma

El grupo 3 corresponde al tiempo máximo de evaluación para dosímetros ambientales según línea 3 de la tabla 13 de la IEC 62387. Resultando el porcentaje para el grupo 3 irradiado 0.7 mSv tuvo un 18% de perdida de información y el grupo 3 irradiado a 0.1 mSv tuvo el 12% de perdida de información.

Es importante mencionar que el tiempo de cambio mínimo de una institución que realice monitoreo ambiental utilizando dosímetros TL es de un mes según lo establecido por la autoridad reguladora en el país.

10.8 Prueba de Verificación.

En la sección 9.5.2.7.3 se describe esta prueba, mediante la ecuación 18 se realizaron los cálculos de los limites superior e inferior, para comparar los valores medidos con el de referencia. A continuación, se muestra una tabla la cual presenta los datos de la dosis de referencia (H_r) Dosis medida (H_m) y Respuesta (R). De estos datos se realizó un gráfico en forma de curva de trompeta.

Hr	Hm	R
0.1	0.114	1.140
0.3	0.314	1.047
1	1.104	1.104
3	3.326	1.109
10	10.461	1.046
30	28.04	0.935

7	ahla	30	valores	de	los	límites
I	avia	30	values	ue	105	IIIIIIIes.

En la Figura 15 podemos ver que los diferentes grupos cumplen con lo establecido por la ISO 14146:2018 a valores de dosis bajas y dosis altas.

Observando el comportamiento de estos datos de razon obtenidos, podemos inferenciar que el lote de dosimetros se comporta de forma estable y homogenea para la realizacion de monitoreo de dosis ambiental a diferentes dosis.

Figura 15. Curva Trompeta de los límites superior e inferior. Fuente: propia.

11. Conclusiones.

De un lote de 200 dosímetros de LiF, se logró obtener la cantidad de 157(78.5 %) dosímetros con calibración adecuada que fueron utilizados para la realización de las pruebas de desempeño para dosímetros ambientales según el LDE-PT-02 conforme a la ISO-IEC 62387.

Según los resultados obtenidos para las pruebas de coeficiente de variación, no linealidad y fading podemos decir que el lote dosímetros cumple con las pruebas de desempeño de manera general con los valores establecidos como satisfactorios por la ISO-IEC 62387.

Al aplicar el instructivo técnico LDE-IT-06 se logró establecer el nuevo factor de irradiación del sistema de 327.1 µSv/vueltas para dosímetros ambientales.

Dicho lo anterior podemos decir que se ha calibrado un lote de dosímetros aptos para su uso por parte del LAF-RAM para cubrir la demanda que soliciten nuevos clientes y/o desarrollo de nuevas investigaciones.

12. Bibliografía.

- AAPM. (2021). (AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs., 2021). AAPM.
- Ace. (2021). Puebas de verificacion. Red de conocimentos.
- https://aceproject.org/main/espanol/et/ete05.htm.
- C.Romel. (2015). Pruebas tipo realizadas a un sistema de dosimetría personal según la norma. Instituto Peruano de Energía Nuclear.
- IEC.62387. (2012). INTERNATIONAL STANDARD.
- ISO. (2018). Organización Internacional de Normalización. ISO 14146.
- J.Garcia. (2017). Dosimetría en cristalino al personal médico intervencionista utilizando dosímetros termoluminiscentes TLD 100. Managua.
- L.Hernandez. (2004). proteccion radiologica. *higienistas.com*, https://colegiohigienistasmadrid.org/na_revista/14editorial.asp.
- L.Peterson, Paulo Márcio, C.Oliveira. (2007). EVALUATION OF UNCERTAINTY SOURCES IN A THERMOLUMINESCENT. ASSOCIAÇÃOBRASILEIRA DEENERGIA NUCLEAR - ABEN, https://www.ipen.br/biblioteca/cd/inac/2007/pdf_dvd/E02_1270.pdf.
- LAF-RAM. (2020). Instructivo de calibracion de sistema.LDE-IT-06. Managua.
- LAFRAM. (2020). LDE-IT-02 INSTRUCTIVO LECTURA Y PUESTA EN CERO. Managua.
- LAF-RAM. (octubre del 2021). *LDE IT-03 Instructivo de calibracion del factor sensibilidad del lector.* Managua.
- LAF-RAM. (septiembre 2021). Instructivo del factor de sensibilidad de calibracion del lector.
- OIEA. (2004). Coleccion de Normas de seguridad del OIEA. OIEA.
- R.Echanique. (2018). Dosimetria Radiologica. Quito- Ecuador: Edifarm.
- Raisa. (2016). Que es la Dosimetria. Raisa, https://raisacv.com/que-es-la-dosimetria/.
- S.Mckeever, M.Moscovith, P.Townsend. (1995). Thermoluminescence dosimetry and materials. 15-55.

59

Wikipedia. (2021). proteccion radilogica. wikipedia,

https://es.wikipedia.org/wiki/Protecci%C3%B3n_radiol%C3%B3gica.

13. Anexos.

Tabla 31.Requisitos de funcionamiento para dosímetros H*(10) (Tomado de la norma IEC 62387:2012).

Line	Characteristic under test	Main characteristics or mandatory measuring range or mandatory range of influence quantity	Performance requirement for the rated range	Clause/ Sub- clause		
1	Capability of the dosimetry system	Measuring range; influence quantities; r _{max} ; model function	To be documented by the manufacturer for the type test	7		
2	Requirements to the design of the dosimetry system	Dose Indication; Information on reader, dosemeter and evaluation algorithm	To be documented by the manufacturer for the type test and checked during type test	8		
3	Effects of radiation not intended to be measured	Response to thermal neutrons, ²⁵² Cf and ²⁵² Cf (D ₂ O-moderated)	Response to be stated by the manufacturer	8.7		
4	Instruction manual	Information for correct use; Information about the performance of the system	To be documented by the manufacturer for the type test and checked during type test	9		
5	Software, data and interfaces	Authenticity of the software; correctness and integrity of data	To be documented by the manufacturer for the type test and checked during type test	10		
6	Coefficient of variation, v	H < 0,1 mSv 0,1 mSv $\le H < 0,5 \text{ mSv}$ 0,5 mSv $\le H \le 20 \text{ mSv}$ H > 20 mSv	15 % (18 – 3-#/0,1 mSv) % 3 % 5 %	11.2		
7	Relative response due to non- linearity	0,1 mSv ≤ <i>H</i> < 0,5 mSv 0,5 mSv ≤ <i>H</i> ≤ 20 mSv 20 mSv < <i>H</i> ≤ 1 Sv	For H < 0,1 mSv and above: -9 % to +11 % ±5 % -9 % to +11 % and for H > 1 Sv	11.3		
8	Overload, after-effects, and reusability	10 times the upper limit of the measuring range: 10-H _{up} , however at maximum 10 Sv. Reused dosemeters shall fulfil the requirements	Perception to be off-scale on the high end side of the measuring range, after-effects may not cause fault measurements and $v(H_{low})$ shall be according to line 6	11.4		
9	Relative response due to mean photon radiation energy and angle of incidence	80 keV to 1,25 MeV and 0" to ± 75" and 180" to (180"± 75") and from ± 75" to ± 105" from reference direction	$r_{min} = 0.71$ to $r_{max} = 1.67$ and $r_{min} = 0.67$ to $r_{max} = 2.00$	11.7.1		
10	Relative response due to mean beta radiation energy	0,2 MeV to 0,8 MeV and 0° to ± 60° from reference direction	r _{min} = 0,71 to r _{max} = 1,67	11.7.2		
11	Response to mixed irradiations	Irradiation with different radiation qualities	Response within ranges of radiation qualities under test	12		
12	Total effect due to environmental performance requirements	Temperature, light, time; for details, see Table 13	See Table 13	13		
13	Deviation due to electromagnetic performance requirements	See Table 14	See Table 14	14		
14	Deviation due to mechanical performance requirements	Drop; for details, see Table 15	\pm 0.7- H_{low} at a dose of H = 7 H_{low}	15		
NOTE The non-symmetrical borders of relative responses r are derived from symmetrical borders of correction factors (1/ r), for example: \pm 40 % for 1/ r e [0,6 1,4] \Rightarrow r e [1/1,4 1/0,6] = [0,71 1,67]						