Tesis Monográfica para optar al título de Ingeniero Civil.

Tema de estudio:

“Propuesta de un diseño estructural de un puente de 15m para un período de 50 años en la comarca Paso Hondo, municipio de Santo Tomas del Norte - Chinandega”.

Elaborado por:

Br. SILVIA ELENA SÁNCHEZ AMPIÉ
Br. BAYARDO JOSE GAITAN PUTOY
Br. MOISES FERNANDO MORENO VILLALOBOS

TUTOR:

ING. BAYARDO ALTAMIRANO.

ASESOR:

ING. EDWIN OBANDO

AGOSTO 2013
INDICE GENERAL

INDICE GENERAL...I
INDICE ESPECIFICO...II
LISTA DE TABLAS...III
LISTA DE ILUSTRACIONES..IV
LISTA DE MAPAS..V
LISTADO DE SIMBOLO...VI
GLOSARIO...VII
AGRADECIMIENTOS...VIII
DEDICATORIA...IX
RESUMEN..X

1. INTRODUCCION..1
2. OBJETIVOS..5
3. GENERALIDADES DE PUENTES..6
4. CARACTERISTICAS DEL AREA DE UBICACIÓN DEL PUENTE...35
5. ESTUDIOS INGENIERILES DEL PUENTE..52
6. DISEÑO HIDRAULICO DEL PUENTE..109
7. DISEÑO ESTRUCTURAL DEL PUENTE...114
8. RESULTADOS...153
9. CONCLUSIONES...154
10. RECOMENDAIONES..155
11. ESPECIFICACIONES TECNICAS...156
12. BIBLIOGRAFIA..166
13. ANEXOS..167
14. SET DE PLANOS..204
INDICE ESPECÍFICO

1. INTRODUCCIÓN ... 1
 1.1 Planteamiento del problema .. 2
 1.2 Justificación .. 3
 1.3 Antecedentes ... 4

2. OBJETIVOS .. 5
 2.1 Objetivo General
 2.2 Objetivo Específico

3. GENERALIDADES DE PUENTES .. 6
 3.1 Definición de puente
 3.2 Elementos de un puente
 3.3 Criterios para seleccionar el tipo de puente a utilizar ... 8
 3.4 Estudios Topográficos
 3.5 Estudios de suelo ... 11
 3.6 Estudios Hidrológicos ... 12
 3.7 Estudios Hidráulicos ... 17
 3.7.1 Socavación en subestructura de puente .. 20
 3.8 Estudios de Riesgo sísmico ... 24
 3.9 Diseño estructural del puente .. 25

4. DESCRIPCIÓN DEL AREA DE UBICACIÓN DEL PUENTE .. 35
 4.1 Aspectos Geográficos
 4.2 Aspectos Económicos
 4.3 Aspectos Historiográfico .. 37
 4.4 Aspectos físico natural (urbano – rural) ... 39
 4.5 Zonificación Urbana del modelo actual del municipio de Santo
del Norte... 45
4.6 Zonas Potenciales de Desarrollo.. 49
4.7 Identificación del proyecto.. 50
4.8 Oferta y demanda de la situación actual
4.9 Beneficio del proyecto.. 51
4.10 Alternativas de solución al problema

5. ESTUDIOS INGENIERILES DEL PUENTE... 52
5.1 Estudios Topográficos
 5.1.1 Trabajo de campo
 5.1.2 Trabajo de gabinete... 55
 5.1.3 Secciones y Perfiles.. 64
5.2 Estudios de Suelo.. 68
 5.2.1 Trabajo de campo y laboratorios
 5.2.2 Resultados de los ensayes.. 69
5.3 Estudios Hidrológicos.. 71
 5.3.1 Metodología y caracterización de la cuenca
 5.3.2 Determinación del caudal por el Método Racional.................... 79
 5.3.3 Determinación del caudal por el Método de Transito de avenida... 80
5.4 Estudio de Impacto Ambiental.. 103
 5.4.1 Identificación y evaluación del paisaje.................................. 104
 5.4.2 Especificaciones técnicas ambientales generales
 5.4.3 Características del Área del proyecto.................................... 105
 5.4.4 Efectos que genera el proyecto al medio ambiente

6. DISEÑO HIDRAULICO.. 109
 6.1 Trabajo de gabinete
 6.2 Resultados obtenidos con el programa Hec-Ras
<table>
<thead>
<tr>
<th>6.3</th>
<th>Estudios de socavación</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. DISEÑO ESTRUCTURAL</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>7.1 Diseño de la superestructura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.1 Diseño de losa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.2 Diseño de la acera</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>7.1.3 Diseño de la viga metálica</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>7.1.4 Calculo del momento del Diafragma</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>7.1.5 Diseño de la placa base</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>7.2 Diseño de la subestructura</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Diseño de la cortina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2 Diseño de la viga de apoyo</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>7.2.3 Diseño del neopreno</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>7.2.4 Diseño del estribo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. RESULTADOS</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>9. CONCLUSIONES</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>10. RECOMENDACIONES</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>11. ESPECIFICACIONES TECNICAS</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>12. BIBLIOGRAFIA</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>13. ANEXOS</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>14. SET DE PLANOS</td>
<td></td>
<td>204</td>
</tr>
</tbody>
</table>
INDICE DE TABLAS

1. Coeficiente de escorrentía
2. Deducciones de la unidad para obtener el coeficiente de escorrentía en áreas agrícolas
3. Valores del coeficiente correctivo
4. Valores del coeficiente Pq en función Q1/Q
5. Valores del coeficiente correctivo PR
6. Coeficiente para la obtención de fuerza sísmica
7. Valores de coeficiente de fricción
8. Puntos tomados por la estación total en el levantamiento topográfico
9. Resultados de los ensayes de penetración
10. Capacidad de soporte a la profundidad.
12. Datos del cálculo de la media aritmética y desviación estándar.
13. Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvias de 5 minuto, comprendido entre el periodo 1971-2011
14. Delta crítico tomando un valor de N=31 con un alfa de 0.05.
15. Delta máximo y delta crítico.
16. Intensidades máximas ajustadas por el método analítico para los diferentes tipos de periodos de retorno
17. Cálculo de las variables “d” y “A” para un periodo de retorno de 50 años.
18. Parámetros de ajuste para la ecuación de intensidad.
19. Determinación del coeficiente de escorrentía para cada sub-cuenca.
20. Características de cada una de las sub-cuencas
21. Parámetros de cada sub-cuenca por el método racional
22. Cálculo de los parámetros de tránsito (tránsito de 1, 2 al 4).
26. Cálculo de los parámetros de tránsito (tránsito de 3,4 al 5
27. Hidrograma transitado de 3 al 5
29. Hidrograma suma en 5
30. Cálculo de los parámetros transitado (tránsito de 5, 6 al 8).
31. Hidrograma transitado de 5 al 8
32. Hidrograma transitado de 6 al 8.
33. Hidrograma suma en 8.
34. Cálculos de los parámetros de tránsito (tránsito de 7, 8 al 9).
35. Hidrograma transitado de 7 al 9.
38. Impactos ambientales.
39. Medida de mitigación
40. Intensidades Máximas anuales de 1971 al 2011
41. Cálculo de las variables hidráulicas
42. Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 10 minuto, comprendida entre el periodo 1971 – 2011.
43. Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 15 minuto, comprendida entre el periodo 1971 – 2011.
44. Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 30 minuto, comprendida entre el periodo 1971 – 2011.
45. Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 60 minuto, comprendida entre el periodo 1971 – 2011.
46. Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 120 minuto, comprendida entre el periodo 1971 – 2011.
INDICE DE ILUSTRACIÓN

1. Puente estructural.
2. Instrumento de medición (estación total).
3. Esquema de tipos de erosión en el pilar de un puente.
4. Protección contra la erosión.
5. Socavación general en el lecho de un río.
6. Superestructura de un puente
7. Estribo de gravedad
8. Uso actual de la tierra.
10. Demostración del instrumento realizando la primera lectura.
12. Importación de puntos.
13. Diseño de las curvas de nivel.
14. Demostración de la herramienta Civilcad en Autocad 3D.
15. Demostración de formato de puntos a importar.
16. Realización de las curvas y secciones.
17. Sección transversal de la estación 0+200 aguas arriba.
18. Sección transversal de la estación 0+180 aguas arriba.
19. Sección transversal de la estación 0+160 aguas arriba.
20. Sección transversal de la estación 0+140 aguas arriba.
21. Sección transversal de la estación 0+120 aguas arriba.
22. Sección transversal de la estación 0+080 aguas abajo.
23. Sección transversal de la estación 0+060 aguas abajo.
24. Sección transversal de la estación 0+040 aguas abajo.
25. Sección transversal de la estación 0+020 aguas abajo.
26. Sección transversal de la estación 0+000 aguas abajo.
27. Perfil longitudinal del río.
28. Curvas intensidad, duración, frecuencia (IDF) ajustadas.
29. Hidrograma sintético de la sub-cuenca 1.
30. Hidrograma sintético de la sub-cuenca 2.
31. Hidrograma sintético de la sub-cuenca 3.
32. Hidrograma sintético de la sub-cuenca 4.
33. Hidrograma sintético de la sub-cuenca 5.
34. Hidrograma sintético de la sub-cuenca 6.
35. Hidrograma sintético de la sub-cuenca 7.
36. Hidrograma sintético de la sub-cuenca 8.
37. Hidrograma sintético de la sub-cuenca 9.
38. Hidrograma transitado de 1 al 4.
41. Hidrograma transitado de 3 al 5.
42. Hidrograma transitado de 4 al 5.
43. Hidrograma suma en 5.
44. Hidrograma transitado de 5 al 8.
45. Hidrograma transitado de 6 al 8.
46. Hidrograma suma en 8.
47. Hidrograma transitado de 7 al 9.
50. Sección aguas arriba.
51. Sección del puente.
52. Sección aguas abajo.
53. Perfil Hidráulico.
54. Perfil isométrico del cauce.
55. Estacionamiento del punto 1.
56. Estación total marca LEICA
57. Medición de la longitud del río a cada 10m.
58. Deterioro de las alcantarillas
59. Vista de las alcantarillas arriba y abajo del río
60. Delimitación de la cuenca
61. División de la cuenca en 9 sub-cuenca

LISTA DE MAPAS

Mapa 1: Zonificación sísmica de Nicaragua
Mapa 2: Zonificación del municipio de Santo Tomas
Mapa 3: Zonas potenciales de desarrollo del municipio de Santo Tomas
Mapa 4: Ubicación del proyecto
Mapa 5: Casco urbano del municipio Santo Tomas
Mapa 6: Comunidad de Paso Hondo
Mapa 7: Cuenca # 58, Rio Negro
Mapa 8: Uso actual del suelo
LISTADO DE SIMBOLOS

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Área de la sección transversal, m^2</td>
</tr>
<tr>
<td>As</td>
<td>Área de refuerzo longitudinal en tensión en vigas, cm^2</td>
</tr>
<tr>
<td>AASHTO</td>
<td>Asociación oficial Americana de carreteras y transportes</td>
</tr>
<tr>
<td>ACI</td>
<td>Instituto Americano del concreto</td>
</tr>
<tr>
<td>@</td>
<td>A cada cierta distancia</td>
</tr>
<tr>
<td>B</td>
<td>Base de un elemento</td>
</tr>
<tr>
<td>b</td>
<td>Ancho de una sección rectangular, o ancho del patín a compresión en vigas, cm.</td>
</tr>
<tr>
<td>bf</td>
<td>Ancho de ala patín superior</td>
</tr>
<tr>
<td>β</td>
<td>Factor de reducción dado en la ecuación J2-1 (AISC 2005)</td>
</tr>
<tr>
<td>Ø</td>
<td>Factor de resistencia especificado en los capítulos B al K (AISC 2005)</td>
</tr>
<tr>
<td>c</td>
<td>Coeficiente de escorrentia</td>
</tr>
<tr>
<td>cm</td>
<td>Unidad métrica, centímetro</td>
</tr>
<tr>
<td>Cm</td>
<td>Carga muerta</td>
</tr>
<tr>
<td>Cv</td>
<td>Carga viva</td>
</tr>
<tr>
<td>d</td>
<td>Peralte efectivo (distancia entre el centroide del acero de tensión y la fibra extrema de compresión), cm.</td>
</tr>
<tr>
<td>E</td>
<td>Empuje de tierra o módulo de elasticidad del acero</td>
</tr>
<tr>
<td>Ec</td>
<td>Ecuación</td>
</tr>
<tr>
<td>EQ</td>
<td>Efecto sísmico</td>
</tr>
<tr>
<td>e</td>
<td>Espesor del asfalto</td>
</tr>
<tr>
<td>F</td>
<td>Fuerza</td>
</tr>
<tr>
<td>FH</td>
<td>Fuerza horizontal</td>
</tr>
<tr>
<td>FL</td>
<td>Fuerza longitudinal</td>
</tr>
<tr>
<td>f'c</td>
<td>Resistencia especificada del concreto a compresión, kg/cm^2</td>
</tr>
<tr>
<td>fr</td>
<td>Factor de resistencia</td>
</tr>
<tr>
<td>ft</td>
<td>Unidad de medida, pies</td>
</tr>
<tr>
<td>fy</td>
<td>Esfuerzo especificado de fluencia del acero, kg/cm^2</td>
</tr>
<tr>
<td>H</td>
<td>Longitud libre de un miembro a flexo compresión, o altura total de un muro</td>
</tr>
<tr>
<td>I</td>
<td>En concreto Impacto, en hidrología Intensidad</td>
</tr>
<tr>
<td>Ix</td>
<td>Momento de inercia respecto a los ejes principales, in^4</td>
</tr>
<tr>
<td>Kg/m²</td>
<td>Kilogramo sobre metro cuadrado</td>
</tr>
<tr>
<td>kip</td>
<td>Kilo libra</td>
</tr>
<tr>
<td>lb</td>
<td>Libras</td>
</tr>
<tr>
<td>L</td>
<td>Claro de un elemento; también longitud horizontal de un muro o de un tablero de muro, m.</td>
</tr>
<tr>
<td>M</td>
<td>Momento</td>
</tr>
</tbody>
</table>
m metros
m³/s Metro cúbico sobre segundo
Mcm Momento por carga muerta
Mcv Momento por carga viva
msnm Metro sobre el nivel del mar
Mt Momento total
Mu Momento último
P Sobrecarga móvil HS-20-44 o presión de tierra
PL Placa de acero
PSI Libras por pulgadas cuadradas
ρ Porcentaje de acero
Q caudal
R Radio hidráulico
S Separación entre ejes de vigas metálicas
Sx Módulo de sección (ala inferior)
Σ sumatoria
T Espesor de losa
t Espesor de un muro, o del patín de una viga, cm
tf Espesor de ala de patín superior
tw Espesor del alma
V Fuerza cortante de diseño que toma el concreto, Kg
Vmax Cortante máximo
v Velocidad, m/s
W Carga muerta por metro cuadrado
Wc Peso del concreto armado
Wcc Peso del concreto ciclópeo
GLOSARIO

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acera</td>
<td>Espacio más elevado que la capa de rodadura donde circulan los peatones.</td>
</tr>
<tr>
<td>Acero-de refuerzo</td>
<td>Cantidad de acero requerido para un esfuerzo determinado.</td>
</tr>
<tr>
<td>Caudal</td>
<td>Volumen de agua que pasa por unidad de tiempo.</td>
</tr>
<tr>
<td>Carga de diseño</td>
<td>Carga que debe soportar la estructura para el diseño.</td>
</tr>
<tr>
<td>Carga muerta</td>
<td>Carga permanente a una estructura.</td>
</tr>
<tr>
<td>Carga ultima</td>
<td>Suma de la carga viva con la carga muerta, afectadas ambas por su respectivo factor de incertidumbre.</td>
</tr>
<tr>
<td>Carga viva</td>
<td>Carga no permanente a una estructura.</td>
</tr>
<tr>
<td>Cimientos</td>
<td>Elementos estructurales que distribuyen las cargas de la superestructura directamente al suelo.</td>
</tr>
<tr>
<td>Concreto ciclópeo</td>
<td>Material de construcción obtenido de una mezcla proporcionada de cemento, arena, piedra y agua, a diferencia del concreto reforzado, los agregados son mucho más gruesos.</td>
</tr>
<tr>
<td>Concreto reforzado</td>
<td>material de construcción obtenido de una mezcla cuidadosamente proporcionada de cemento, arena, grava y agua, todo esto combinado con el acero de refuerzo, que es un elemento homogéneo, usualmente reticular, cuyas características atómicas lo hacen extremadamente resistente a esfuerzos de tensión.</td>
</tr>
<tr>
<td>Cuenca</td>
<td>Parte continua de la superficie de la tierra, ocupada por un sistema de desagüe, cuyas aguas fluyen al mismo rio, lago o mar. Consta de una corriente principal superficial junto con corrientes superficiales tributarias, limitada por su divisoria de aguas.</td>
</tr>
<tr>
<td>Deslizamiento</td>
<td>fuerza que tienda a deslizar horizontalmente el muro</td>
</tr>
<tr>
<td>Término</td>
<td>Definición</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Diafragma</td>
<td>Unidades usadas para evitar la deformación de viga en la superestructura.</td>
</tr>
<tr>
<td>Empuje</td>
<td>Fuerza ejercida por el suelo a la estructura.</td>
</tr>
<tr>
<td>Estribo</td>
<td>Muro que soporta a la superestructura y transmite su peso al suelo.</td>
</tr>
<tr>
<td>Especificaciones</td>
<td>Normas general y técnica de construcción contenidas en un proyecto,</td>
</tr>
<tr>
<td></td>
<td>disposiciones o cualquier otro documento que se emita antes o durante la</td>
</tr>
<tr>
<td></td>
<td>ejecución de un proyecto.</td>
</tr>
<tr>
<td>Estratigrafía</td>
<td>Parte de la geología que estudia las rocas que forman estrados o capas</td>
</tr>
<tr>
<td></td>
<td>sobrepuestas.</td>
</tr>
<tr>
<td>Estribo</td>
<td>Estructura en extremos del puente que recibe las cargas de la superestructura</td>
</tr>
<tr>
<td></td>
<td>y la transmite a la cimentación.</td>
</tr>
<tr>
<td>Fuerza de sismo</td>
<td>Carga que es inducida por un sismo y que provoca esfuerzos en la subestructura.</td>
</tr>
<tr>
<td>HL, HS</td>
<td>Carga de carril, carga de camión (de AASHTO).</td>
</tr>
<tr>
<td>Impacto</td>
<td>Carga provocada por el impacto del camión estandarizado sobre la superestructura.</td>
</tr>
<tr>
<td>Impacto ambiental</td>
<td>Consecuencia, efectos o cambios en el ambiente derivados de la ejecución de un proyecto en particular.</td>
</tr>
<tr>
<td>Losa</td>
<td>Elemento estructural, plano que soporta directamente las cargas y las transmite a diferentes apoyos.</td>
</tr>
<tr>
<td>Luz</td>
<td>Longitud entre los apoyos de un puente.</td>
</tr>
<tr>
<td>Medidas de mitigación</td>
<td>Acción de reducir, disminuir o atenuar los impactos en el ambiente.</td>
</tr>
<tr>
<td>Neopreno</td>
<td>Material natural o artificial con propiedades similares a las del gaucho, utilizado en apoyos de puente.</td>
</tr>
<tr>
<td>Palabra</td>
<td>Definición</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Presión</td>
<td>Fuerza o carga por unidad de área.</td>
</tr>
<tr>
<td>Puente</td>
<td>Estructura que permite pasar el tráfico de un punto a otro, a través de cualquier interrupción.</td>
</tr>
<tr>
<td>Sobrecarga</td>
<td>Carga adicional a la aplicada, que se toma como factor de seguridad.</td>
</tr>
<tr>
<td>Socavación</td>
<td>Efecto producido en taludes, en el cual parte de los taludes es minado por el agua de abajo hacia arriba.</td>
</tr>
<tr>
<td>Subestructura</td>
<td>Es un conjunto de elementos, que han sido diseñados para soportar la superestructura de un puente y transmitir las cargas al suelo.</td>
</tr>
<tr>
<td>Suelo</td>
<td>Material no consolidado o semi consolidado que se encuentra sobre la capa de roca de la corteza terrestre.</td>
</tr>
<tr>
<td>Superestructura</td>
<td>Conjunto de elementos, diseñados para soportar las cargas de tráfico y transmitirlas a la subestructura.</td>
</tr>
<tr>
<td>Talud</td>
<td>Superficie inclinada respecto a la horizontal que es adoptada en forma permanente.</td>
</tr>
<tr>
<td>Volteo</td>
<td>Es el momento de la fuerza horizontal, que tiende a voltear el estribo respecto al borde exterior.</td>
</tr>
</tbody>
</table>
AGRADECIMIENTOS

Damos Gracias:

A Dios nuestro creador por darnos su amor, salud, protección y fortaleza cada día y por permitirnos culminar con éxitos esta nueva etapa de nuestras vidas.

A nuestros padres por habernos dado su amor, comprensión y apoyo incondicional en el transcurso de nuestra carrera.

A nuestro tutor y asesor el Ingeniero Bayardo Altamirano y el Ingeniero Edwin Obando, por la disponibilidad de ayudarnos en cualquier dificultad presentada durante la ejecución de este documento.

A nuestros maestros de la carrera de Ingeniería Civil por transmitirnos los conocimientos necesarios para la realización de los diferentes estudios realizados al puente como el Ingeniero Oswaldo Balmaceda, Ingeniero Bayardo Altamirano, Ingeniero Edwin Obando, Ingeniero Raúl Madrigal, Doctor Víctor Tirado, Ingeniero Ebert López, Ingeniero Adolfo Cordero, entre otros.

Agradecemos muy especial a todas aquellas personas que han estado con nosotros a lo largo de estos años dándonos fuerzas, apoyo y comprensión, entre ellos: Sra. Dora María Ampié Carballo, Sra. Bernarda del Carmen Putoy, Sra. Bertha Sonia Villalobos Navarro y a nuestros compañeros de clase que estuvieron con nosotros a lo largo de la carrera.

Silvia Elena Sánchez Ampié
Bayardo José Gaitán Putoy
Moisés Fernando Moreno Villalobos
DEDICATORIA

Este trabajo monográfico lo dedico a:

Nuestro padre celestial Dios por haberme dado la vida, una gran familia, amigos, salud y sabiduría para poder culminar mi carrera.

La mujer que me dio la vida Mi Madre Dora María Ampié Carballo, la cual ha trabajado arduamente para pagar mis estudios, la que estuvo siempre conmigo dándome amor, fuerza, consejos y apoyo para poder llegar a ser un profesional.

Mi padre Manuel Salvador Sánchez Miranda por sus consejos y por su amor.

Mis Hermanos principalmente mi hermana Jessica Araceli Sánchez Ampié, por cuidar a mis hijos mientras terminaba mis estudios, y por ser mí amiga fiel estando en los momentos difíciles y alegres de mi vida.

Mis Hijos Santiago Haziel Ruíz Sánchez, Camila Michelle Ruíz Sánchez quienes son la razón de mi existir y mi fuerza para seguir luchando por alcanzar mis metas.

Mi Esposo Francisco Haziel Ruíz Colindres por apoyarme en cada momento y alentarme a seguir adelante.

Mis amigo de monografía Bayardo José Gaitán Putoy y Moisés Fernando Moreno Villalobos porque sin su ayuda no hubiera sido posible esta monografía.

Mis maestros Ingeniero Bayardo Altamirano, Ingeniero Edwin Obando, Ingeniero Oswaldo Balmaceda, entre otros, por darme su apoyo y sabiduría en las dificultades presentadas en la elaboración del documento.

Br. Silvia Elena Sánchez Ampié
DEDICATORIA

Este trabajo monográfico lo dedico:

A Dios padre, hijo y espíritu santo, por ser las tres divinas personas a las que les debo todo cuanto soy, por bendecirme y acompañarme en todo momento.

A mis queridos padres Bertha Sonia Villalobos Navarro, Moisés Moreno Robles, como atributo al gran sacrificio y apoyo incondicional que siempre me han manifestado.

A mi hijo Steven Moisés Moreno Rivera, por ser la mayor bendición de Dios en mi vida, y mis hermanos Glendis Moreno, Luis Carlos Moreno, Álvaro Moreno, por su apoyo incondicional a lo largo de toda mi carrera.

A Mis abuelos, a mis tíos por su ayuda y todos sus consejos.

A mis amigos y compañeros de clase que siempre estuvieron en la formación de mi carrera, en especial a mis amigos de monografía.

A todos nuestros profesores que siempre estuvieron formándonos como profesionales.

A todas las personas que de una u otra forma siempre estuvieron conmigo a lo largo de toda mi carrera.

Br. Moisés Fernando Moreno Villalobos
DEDICATORIA

Este trabajo monográfico lo dedico:

A Dios por haberme dado la vida, sabiduría, y una gran familia que con su apoyo me dieron fuerzas para culminar mi carrera.

A mis amados y queridos padres Bernarda del Carmen Putoy, y José Andrés Gaitán Vivas, que con tanto sacrificio y esfuerzo me brindaron su apoyo incondicional.

A mis hermanos que con sus constantes consejos me animaron a que culminara mi carrera.

A mis queridos abuelos que siempre me brindaron sus consejos para emprender este camino de lucha.

A todos mis amigos de la carrera y en especial a mis compañeros de monografía Silvia Elena Sánchez y Moisés Fernando Moreno.

A todos los docentes que con su lucha y perseverancia compartieron sus conocimientos.

A todas las personas que me motivaron y me brindaron sus consejos.

Br. Bayardo José Gaitán Putoy
Resumen

En esta tesis monográfica la cual consiste en “La propuesta de un diseño estructural de un puente en la comarca de Paso Hondo”, presenta los diferentes estudios pertinentes que se deben realizar en el diseño de un puente, se analizó la factibilidad técnica y ambiental de la obra. Este proyecto permitirá mejorar las condiciones actuales de vida de los habitantes y traerá consigo mejoras al desarrollo de las comunidades.

Se alcanzaron los objetivos planteados, y se efectuaron los estudios topográficos, con el fin de conocer el perfil del río y del camino, así como también se realizó los estudios hidrológicos e hidráulicos del puente para poder llegar a la obtención del caudal de diseño y el tirante crítico del río para dimensionar la subestructura tomando en cuenta la influencia de la socavación y la sub-presión en el diseño.

Se obtuvo la estratigrafía y diferentes propiedades físicas y mecánicas del suelo del área de estudios para el diseño de las cimentaciones, y se realizó una pequeña evaluación ambiental para conocer el impacto ambiental que traerá la ejecución del proyecto a la comunidad de Paso Hondo.

Luego de esto se presenta una serie de recomendaciones para un buen funcionamiento y vida útil del puente.
1. **INTRODUCCIÓN**

El diseño de puentes tiene como propósito proporcionar una vía de paso sobre el agua, carretera o una vía férrea, la cual surge por la necesidad de transportar bienes y servicios donde las depresiones de terrenos no lo permiten.

La propuesta monográfica se desarrolló en una comarca del municipio de Santo Tomas del Nance también conocido como Santo Tomas del Norte el cual fue fundado el 9 de abril de 1889 y posee una extensión territorial de 50 km2 con una altitud sobre el nivel del mar de 180 metros.

Su posición geográfica, como municipio fronterizo con Honduras, ha permitido el desarrollo de actividades comerciales en los últimos 8 años; lo que ha diversificado la actividad económica de sus pobladores y mengado los efectos de los años de sequía, sin embargo, las actividades económicas se han venido reduciendo debido al problema de acceso en época de invierno que presenta la comunidad, no obstante, las autoridades de la localidad trataron de dar una solución rápida con un puente provisional para que las crecida de los ríos permitieran el paso de peatones, bicicletas, carros y camiones de carga, que vienen de Honduras y de las comarcas aledañas y así poder aumentar la actividad económica nuevamente.

El documento se basa en otra propuesta de solución de la problemática que existe en la comunidad, a su vez expone la secuencia y técnicas en el diseño de un puente vehicular enmarcando la aplicación de los conocimientos adquiridos de las diversas ramas de las ingeniería civil a partir de datos de campo que se ajustan a la realidad del área de estudio, y que conllevan estudios de topografías, hidrología, hidráulica, geotécnicos entre otros.
1.1 Planteamiento del Problema

En la comarca Paso Hondo existe un gran problema de accesibilidad en tiempo de invierno, las autoridades municipales en busca de una solución que dé solución al problema implementó una estructura provisional de un puente de alcantarilla para el cual no se realizó ningún tipo de estudio, solamente se colocó la estructura en el lugar, en corto tiempo ya está deteriorada.

La estructura provisional no fue de gran ayuda, ya que las inundaciones siguen impidiendo el paso a los vehículos que vienen de la frontera de Honduras y de las otras comarcas aledañas, perjudicando económicamente a la población.

El objeto del Trabajo es el de proyectar un puente para tránsito vehicular, perteneciente a la red Vial Nacional, que salva un obstáculo constituido por un río no navegable con cauce extendido, con moderado desnivel del terreno.
1.2 Justificación

Actualmente la infraestructura vial de la comarca Paso Hondo presenta varias deficiencias dentro de las cuales se encuentra la incomunicación parcial de las comunidades Las Marías, Quebrada Honda, Ceiba Herrada, comunidades aledañas de Honduras y Paso Hondo debido a que se encuentran divididas por un cauce que imposibilita el acceso en temporadas de invierno, reduciendo la economía municipal del municipio Santo Tomas del Norte.

Se propone un diseño estructural de un puente para un periodo de 50 años en la comarca Paso Hondo el cual cumplirá con los parámetros de diseños especificado por las normas de la American Association of State Highway and Transportation Officials (AASHTO, Método de diseño por factores de carga y resistencia) como también el Reglamento Nacional de la Construcción para así garantizar tanto el funcionamiento de la estructura como la vida útil del mismo y por consiguiente minimizar el problema de acceso vehicular y peatonal en temporadas de invierno.

El puente proporcionará a las comunidades en mención el incremento en sus finanzas familiar ya que sus productos de cosechas no se perderán por la inaccesibilidad, aumentaran las inversiones municipales y habrá reducción de las enfermedades diarreicas y respiratorias a infantes provocadas por las crecidas de los ríos.

La importancia del puente se enfatiza en el progreso económico del municipio, ya que al beneficiarse el sector rural aumentara la productividad del municipio en el ámbito financiero y social.
1.3 Antecedentes

La comarca de Paso Hondo se localiza en la parte suroeste del municipio de Chinandega, haciendo el recorrido de forma circular hay 10km exactos hasta la cabecera Urbana1. Anteriormente era el paso accesible hacia Chinandega para la comercialización de animales, productos agrícolas y también para carretas adornadas para fiestas patronales desde Somotillo a Cinco Pinos, la economía siempre se ha visto afectada para los agricultores, en época de invierno, ya que en las sub-cuencas Guasaule y Gallo hay un aumento del caudal, provocando que los caminos de tierra con balastre y sin balastre existentes en el municipio se inunden y dejen incomunicadas a la población de las comarcas rurales con la población de la zona urbana.

Este conflicto se ha venido desarrollando durante estos años causando a los habitantes del casco rural una disminución de ingresos económicos, ya que sus cosechas se pierden por no existir un camino en buen estado donde los pobladores puedan transitar para dirigirse a otros destinos a vender sus productos, a su vez aumenta la pobreza en todo el municipio, sin embargo, en la comarca Paso Hondo es donde se encuentra el mayor problema, la alcaldía de ese municipio improviso con una alternativa no muy viable la cual fue de un puente de alcantarilla que no cuenta con ningún parámetros de diseño, por lo cual a su corta estancia ya presenta deterioro de la infraestructura.

2. OBJETIVOS

2.1. Objetivo General

- Proponer el Diseño estructural de un puente de 15m para un periodo de diseño de 50 años en la comarca Paso Hondo, Santo Tomas, Chinandega.

2.2. Objetivo Específico

- Diagnóstico del estado actual del puente provisional existente.
- Estudiar las condiciones hidrológicas y topográficas de la zona de estudio.
- Analizar el suelo del sitio.
- Determinar el área hidráulica del puente.
- Calcular el riesgo sísmico de la estructura.
- Realizar una evaluación de impacto ambiental.
3. GENERALIDADES DE PUENTES

3.1 Definición de Puente

Un puente es una estructura destinada a salvar obstáculos naturales como ríos, valles profundos, hondonadas, lagos o brazos de mar y obstáculos artificiales. Son diseñados para proporcionar el paso continuo sobre el obstáculo y normalmente sirven a carreteras y ferrocarriles con el fin de unir caminos de viajeros y mercancías. Obra estructural requerida para atravesar a desnivel un accidente geográfico o un obstáculo artificial por el cual no es posible el tránsito en la dirección de su eje.

3.2 Elementos de un puente

En todo puente se distinguen tres partes fundamentales:

3.2.1 La superestructura: es la parte de la estructura destinada a transmitir las cargas (cargas muertas y cargas vivas) a los apoyos, se dividen en isostáticas como el caso delos trabes libremente apoyados, trabes con voladizos y arcos de tres articulaciones, y en hiperestáticas como el de los trabes continuos, arcos empotrados, arcos de dos articulaciones, marcos rígidos.
Está constituida por:

La superficie de rodamiento: suele ser de concreto reforzado de alta resistencia y en pocas ocasiones de elementos prefabricados, también puede ser metálica como en el caso de puentes de cubierta orto trópica.

La superficie bituminosa: es una capa asfáltica que sirve como recubrimiento protector a la superficie de rodamiento.

Barandales: son elementos instalados para garantizar la seguridad de los peatones, y al mismo tiempo sirven para evitar accidentes de caídas de los vehículos al vacío.

Vigas longitudinales y transversales: cuando los puentes son de claros cortos el elemento principal son vigas longitudinales, que se apoyan en los extremos del puente. Cuando el puente tiene un claro muy corto (menor ó igual a 6 metros) no se proveen vigas longitudinales, sino, de una losa más gruesa la cual resulta mucho más económica.

Diafragmas y acera.

3.2.2. La subestructura: es la parte que transmite las cargas de los apoyos a la infraestructura.

Los estribos son básicamente pilares con muros en los extremos. Estos muros contienen el relleno del acceso y deben tener la longitud adecuada para evitar la erosión y que se despliegue el relleno; éstos deben protegerse contra el volteo, deslizamiento, desplazamientos laterales, fracturas del subsuelo y la descarga de los pilotes cuando estos existan.

Los estribos pueden ser abiertos o cerrados, los estribos cerrados pueden ser huecos o sólidos. Los estribos sólidos son generalmente de mampostería elaborados por bolones por su facilidad de hallarlos en las orillas de los ríos. Los estribos huecos son llamados así por su forma estructural, pero casi siempre se
llenan de suelo – cemento para proporcionar peso y darle mayor seguridad a la estructura.

3.2.2 La infraestructura: lleva las cargas al suelo de cimentación y pueden estar constituidas de pedestales, mamposterías o de concretos, pilotes, cilindros de fricción, etc.

3.3 Criterios para seleccionar el tipo de puente a utilizar

El claro requerido: Éste debe ser seleccionado para permitir el paso eficiente del caudal de creciente cuya magnitud y frecuencia deberán estar de acuerdo con el tipo y clase de estructura.

Condiciones de cimentación: Estas son trascendentales para decidir el tipo de puente por construir ya que tiene influencia en: el sistema de cimentación, la longitud de los claros parciales, y el tipo de estructura a emplear, ya que cuando las condiciones de cimentación son deficientes se deben descartar las estructuras hiperestáticas.

Espacio libre requerido: Este factor tiene influencia en el tipo de estructura a utilizar, cuando existen condiciones establecidas tales como: espacio libre horizontal y vertical mínimo, esto ocurre cuando se desea el paso de cualquier objeto flotante (barcos, árboles, etc.,) según la importancia del obstáculo salvado.

Cargas vivas por soportar: Conociendo la ubicación del puente, su importancia económica y social, y su respectivo estudio de tránsito, nos proporcionan dos elementos importantes para el diseño de éste, los cuales son: el número de carriles (ancho de la calzada) y el tipo de carga viva a utilizar.

3.4 Estudios Topográficos

La topografía se encarga del estudio altiplanimétrico de la superficie de la tierra, su importancia se basa en la representación de los detalles y accidentes topográficos de un terreno. En toda obra los estudios topográfico son fundamentales porque nos proporciona una serie de elementos (curvas de nivel, perfiles longitudinales y secciones transversales) que se resumen en planos topográficos con lo cual se lleva a cabo todas las evaluaciones y valoraciones, con el fin de obtener un resultado más apegado a la realidad del medio.

Curvas de nivel

Las curvas de nivel llamadas también isohipsas, son líneas que se trazan uniendo todos los puntos que se encuentran en las mismas alturas de un determinado nivel de referencia. Las curvas de nivel se calculan utilizando el método de interpolación de las cotas obtenidas en el terreno.

Estación total

Se denomina estación total a un instrumento electro – óptico utilizado en topografía, cuyo funcionamiento se apoya en la tecnología electrónica, consistiendo en la incorporación de un distanciómetro y un microprocesador a un teodolito electrónico.

Existen diferentes clases de estación total entre ellas tenemos:

- Estación Total Electrónica CST/Berger.
- Taquímetro electrónico Leica TPS400
Ilustración 2. Instrumento de medición (Estación Total). Fuente: Elaboración propia.

Elementos principales:

a. Dispositivo de puntería
b. Auxiliar de puntería integrado EGL (opcional)
c. Tornillo para movimiento vertical
d. Batería
e. Batería, tapa y distaniciador para GEB111
f. Tapa de la batería
g. Ocular, Enfoque del retículo
h. Enfoque de la imagen
i. ASA desmontable, con tornillos de fijación
j. Interfaz serie RS232
k. Tornillo nivelante
l. Objetivo con distanciómetro electrónico (EDM) Integrado; orificio de salida del rayo de medición
m. Pantalla
n. Teclado
o. Nivel esférico
p. Tecla de encendido
q. Disparador de medición
r. Tornillo para movimiento horizontal.
El funcionamiento de una estación total se basa en un principio geométrico sencillo conocido como Triangulación, que consiste en determinar la coordenada geográfica de un punto cualquiera a partir de otros dos conocidos\(^7\).

En palabras claras para realizar un levantamiento con Estación Total se ha de partir de 2 puntos con coordenadas conocidas o en su defecto asumidas, y a partir de esa posición se observan y calculan las coordenadas de cualquier otro punto en campo. Se ha difundido universalmente la nomenclatura para estos tres puntos, y es usada por igual en cualquier modelo de Estación Total:

Coordenadas de la Estación (Station Coordinate): Es la coordenada geográfica del punto sobre el cual se ubica el aparato en campo. A partir del mismo se observarán todos los puntos de interés.

Vista Atrás (Back Sight): Es la coordenada geográfica de un punto visible desde la ubicación del aparato. El nombre tiende a confundir al pensar que este punto se ubica hacia atrás en el sentido que se ejecuta el levantamiento, pero más bien se refiere cualquier punto al que anteriormente se le determinaron sus coordenadas, mediante el mismo aparato o con cualquier otro método aceptable.

Observación (Observation): Es un punto cualquiera visible desde la ubicación del aparato al que se le calcularan las coordenadas geográficas a partir del Stn Coordinate y el Back Sight.

Levantamiento planimétrico: Consiste en determinar la representación gráfica de la superficie, sobre la cual se pretende proyectar los ejes constructivos, en este se logra apreciar los obstáculos y alineaciones que nos ofrece el área de estudio. Además, nos sirve de guía para realizar diferentes propuestas en función de las condiciones que nos ofrece el terreno\(^8\).

Levantamiento altimétrico: Facilita la representación del relieve del terreno en estudio, con este estudio el ingeniero logra determinar parámetros importantes entre

\(^7\) Manual ET LEICA TPS400. (2012). China, (pp. 8)

los cuales tenemos: la pendiente, secciones transversales, y perfiles longitudinales de los ejes propuestos9.

3.5 Estudios de suelos

El objetivo del estudio de suelo es establecer las características geotécnicas, es decir, la estratigrafía, la identificación y las propiedades físicas y mecánicas de los suelos para el diseño de cimentaciones estables. La Ingeniería geotécnica es una disciplina tecno científica que agrupa a la geología, geofísica, mecánica de suelos, relacionándolas con las obras civiles.

Para que el ingeniero pueda proyectar una cimentación adecuada, debe tener un conocimiento razonable de las propiedades físicas y mecánicas y disposición de los materiales del subsuelo. Esta información puede obtenerse mediante técnicas de investigación en el terreno y en el laboratorio conocida como investigación del subsuelo.

La identificación de las causas del comportamiento deficiente de las obras con notable frecuencia señala que las deformaciones masivas de las estructuras son atribuidas a movimientos de sus fundaciones los que a su vez reflejan desplazamientos y asentamientos del suelo soporte.

Por medio de la investigación del subsuelo se puede determinar parámetros representativos o configurar un modelo analítico que reproduzca en la mejor forma posible, una compatibilidad con la importancia y las necesidades del problema. De este modo se logra entonces seleccionar racionalmente el elemento de transición estructura-suelo.

9 9. Idem. (pp. 65).
3.6 Estudios Hidrológicos

- Método racional

El método utilizado para determinar el caudal del diseño de una cuenca pequeña, es el método racional, presentado por Emil Kuichling en 1889 y mejorado posteriormente por otros.

Este método asume que el caudal máximo para un punto dado se alcanza cuando todas las partes del área tributaria están contribuyendo con su escorrentía superficial durante un periodo de precipitación máxima. Para lograr esto, la tormenta máxima debe prolongarse durante un periodo igual o mayor que el que necesita la gota de agua más lejana hasta llegar al punto considerado o el tiempo de concentración (Tc).

El método racional está representado por la siguiente ecuación:

\[Q = \frac{C \times I \times A}{360} \]
(Ecuación 1)

Siendo:

- Q: caudal de diseño en m³/s
- I: intensidad de la lluvia en mm/hora para una duración igual al tiempo de concentración (Tc).
- A: área de drenaje de la sub-cuenca, en Has.
- Cp: coeficiente ponderado de escorrentía, adimensional.

- Coeficiente de Escorrentía.

El coeficiente de escorrentía “C”, transforma la lámina de agua en el caudal pico y su valor depende de elementos como el tipo de suelo, pendiente del terreno y otros factores de menor incidencia.\(^{10}\) Estos valores se estiman por inspección directa en el

campo y complementados por medio de mapas cartográficos. Los valores se muestran en la tabla 2:

<table>
<thead>
<tr>
<th>Característica de la superficie</th>
<th>Periodo de retorno (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Áreas desarrolladas</td>
<td></td>
</tr>
<tr>
<td>Asfaltico</td>
<td>0.73</td>
</tr>
<tr>
<td>Concreto/techo</td>
<td>0.75</td>
</tr>
<tr>
<td>Zonas verdes (jardines, parques, etc.)</td>
<td></td>
</tr>
<tr>
<td>Condición pobre (cubierta de pasto menor del 50% del área)</td>
<td></td>
</tr>
<tr>
<td>Plano, 0 - 2%</td>
<td>0.32</td>
</tr>
<tr>
<td>Promedio, 2 - 7%</td>
<td>0.37</td>
</tr>
<tr>
<td>Pendiente, superior a 7%</td>
<td>0.40</td>
</tr>
<tr>
<td>Condición promedio (cubierta de pasto del 50 al 75% del área)</td>
<td></td>
</tr>
<tr>
<td>Plano, 0 - 2%</td>
<td>0.25</td>
</tr>
<tr>
<td>Promedio, 2 - 7%</td>
<td>0.33</td>
</tr>
<tr>
<td>Pendiente, superior a 7%</td>
<td>0.37</td>
</tr>
<tr>
<td>Condición buena (cubierta de pasto mayor del 75% del área)</td>
<td></td>
</tr>
<tr>
<td>Plano, 0 - 2%</td>
<td>0.21</td>
</tr>
<tr>
<td>Promedio, 2 - 7%</td>
<td>0.29</td>
</tr>
<tr>
<td>Pendiente, superior a 7%</td>
<td>0.34</td>
</tr>
<tr>
<td>Áreas no desarrolladas</td>
<td></td>
</tr>
<tr>
<td>Área de cultivos</td>
<td></td>
</tr>
<tr>
<td>Plano, 0 - 2%</td>
<td>0.31</td>
</tr>
<tr>
<td>Promedio, 2 - 7%</td>
<td>0.35</td>
</tr>
<tr>
<td>Pendiente, superior a 7%</td>
<td>0.39</td>
</tr>
<tr>
<td>Pastizales</td>
<td></td>
</tr>
<tr>
<td>Plano, 0 - 2%</td>
<td>0.25</td>
</tr>
<tr>
<td>Promedio, 2 - 7%</td>
<td>0.33</td>
</tr>
<tr>
<td>Pendiente, superior a 7%</td>
<td>0.37</td>
</tr>
<tr>
<td>Bosques</td>
<td></td>
</tr>
<tr>
<td>Plano, 0 - 2%</td>
<td>0.22</td>
</tr>
<tr>
<td>Promedio, 2 - 7%</td>
<td>0.31</td>
</tr>
<tr>
<td>Pendiente, superior a 7%</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Así mismo las sugerencias de Bernard (1950), para obtener el valor de c en función de la topografía, el tipo de suelo y la cobertura. El valor de c es obtenido sumando los valores de ci de cada uno de los tres factores de la tabla que se muestra a continuación y se resta la suma de la unidad.

<table>
<thead>
<tr>
<th>Tipo de área</th>
<th>Valores de c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topografía</td>
<td></td>
</tr>
<tr>
<td>Tierras planas, pendiente promedio 0.2 a 0.6 m. por km.</td>
<td>0.30</td>
</tr>
<tr>
<td>Tierras onduladas, pendiente promedio 2.8 a 3.8 m. por km.</td>
<td>0.20</td>
</tr>
<tr>
<td>Tierras montañosas, pendiente promedio 28 a 47 m. por km.</td>
<td>0.10</td>
</tr>
<tr>
<td>Suelo</td>
<td></td>
</tr>
<tr>
<td>Arcilla impermeable</td>
<td>0.10</td>
</tr>
<tr>
<td>Combinación de arcilla y barro</td>
<td>0.20</td>
</tr>
<tr>
<td>Arenoso</td>
<td>0.40</td>
</tr>
<tr>
<td>Cobertura</td>
<td></td>
</tr>
<tr>
<td>Cultivos</td>
<td>0.10</td>
</tr>
<tr>
<td>Bosques</td>
<td>0.20</td>
</tr>
</tbody>
</table>

El método de Muskingum para calcular la escorrentía se basa en la siguiente ecuación de traslado:

$$O_2 = c_0 I_2 + c_1 I_1 + c_2 O_1$$ \hspace{1cm} (Ecuación 2)

Donde

$$c_0 = - \frac{Kx - 0.5t}{K - Kx + 0.5t}$$ \hspace{1cm} (Ecuación 3)

$$c_1 = \frac{Kx + 0.5t}{K - Kx + 0.5t}$$ \hspace{1cm} (Ecuación 4)
\[c_2 = \frac{K - Kx - 0.5t}{K - Kx + 0.5t} \]

(Ecuación 5)

\[Y = c_0 + c_1 + c_2 = 1 \]

I₁ e I₂, son los caudales de entrada, O₁ y O₂, son los caudales de salida.
K = Valor aproximado del tiempo de viaje de la ola a través del tramo donde se hace el traslado se calcula similar al tiempo de concentración.
x = Varía entre 0.1 y 0.3 para cauces naturales, se toma un valor promedio de 0.2

\[C = 1 - (C_1 + C_2 + C_3) \]

(Ecuación 6)

Las pendientes del terreno se estimaran a partir de las curvas de nivel de los mapas escala 1: 50,000 de Somotillo y Cinco pino.

- **Área Tributaria.**

El área tributaria o sea la superficie de la cuenca de drenaje se debe estimar con los planos geodésicos, escala 1: 50,000, el cual contiene curvas de nivel cada 20 metros.

- **Determinación de la intensidad.**

La intensidad se expresa como el promedio de la lluvia en mm/hora para un periodo de retorno determinado y una duración igual al del tiempo de concentración (Tc) de la cuenca.

Los valores intensidades se pueden obtener a partir de las curvas Intensidad Duración Frecuencia (IDF) que elabora INETER o determinarse mediante cálculo con las ecuaciones que ajustan a dichas curvas calculadas por ese mismo instituto.

El ajuste de los datos por medio de los mínimos cuadrados resulta en una ecuación en la cual se entra con la duración en minutos y se obtiene la intensidad:
\[I = \frac{A}{(T+d)^b} \]

(Ecuación 7)

Siendo:

I = intensidad en mm/hora.
A, d y b = coeficientes determinados
T = duración de la lluvia en minutos

El Tiempo de Concentración Tc puede calcular con la siguiente formula que propone Eduardo Basso (1977);

\[Tc = 0.0041 k^{0.770} \]

(Ecuación 8)

Donde

\[k = 3.28 \frac{L}{S^{0.5}} \]

(Ecuación 9)

Siendo

L= longitud de rio del punto más elevado de la cuenca al punto de salida (m)

\[S = \frac{H-h}{L} \]

(Ecuación 10)

Donde H es elevación máxima, h= elevación mínima

3.7 Estudios Hidráulicos

La determinación de las variables hidráulicas se basa en el análisis de la información hidrológica, en los registros de levantamientos topográficos, en los análisis granulométricos y de clasificación de muestra del material que forma el lecho y las orillas del cauce.

Los factores hidráulicos conllevan a una real apreciación del comportamiento hidráulico del rio que permiten definir los requisitos mínimos del puente y su...
ubicación optima en función de los niveles de seguridad o riesgos permitidos o aceptables para las características particulares de la estructura.

La hidráulica es la ciencia que estudia experimentalmente o investiga, por medio de cálculos, las condiciones del equilibrio y del movimiento de los líquidos.

Para la determinación del caudal de la sección se emplea la ecuación de Manning para canales abiertos

\[Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}} \]

(Ecuación 11)

Donde
n= Coeficiente de Manning
R= radio hidráulico (m)
S= pendiente media del cauce (m/m)
A= área de la sección transversal (m²)

Si una obstrucción se sitúa en una corriente, el patrón de flujo en las inmediaciones de esa obstrucción se modificará. Puesto que la capacidad de transporte de sedimento en el fondo del río (arena o grava) es una función de las características del flujo, el cambio en el flujo producirá un cambio en la capacidad de transporte del material de fondo. La erosión o deposición ocurrirá en un área donde se produzca un desequilibrio entre la capacidad de transporte de fondo y el material abastecido desde aguas arriba. Como la capacidad de transporte es función de la velocidad del flujo, la introducción de estructuras que cambien la velocidad del flujo casi siempre está acompañada de cambios en el fondo de ríos con fondo móvil.

La erosión puede entonces ser definida como el aumento de una sección de flujo por la remoción del material del fondo a través de la acción del fluido en movimiento.

La erosión total en el cauce de un río está compuesta por tres componentes, que en general son aditivos:
La erosión general, debido a los cambios a largo plazo en la elevación del lecho del río (erosión general o sedimentación), la cual podría ocurrir esté o no el puente.

La erosión por contracción, es el resultado de la restricción de la vía fluvial o canal ya sea natural o debido a un puente y a sus aproximaciones.

La erosión local es una consecuencia de la obstrucción del flujo por pilares o estribos, los cuales aceleran el flujo, creando vórtices que remueven el material alrededor de ellos.

La erosión para un puente se analiza como erosión potencial y tiene carácter de estimación. Sabemos también que existen procesos y componentes de la erosión que ocurren independientemente del puente (erosión general transitoria y a largo plazo, erosión en curvas,) y su combinación.

Las componentes de la erosión específica en el caso de un puente son dos[11]:

La erosión en la sección del puente y sus inmediaciones, debida al estrechamiento causado por el puente con respecto al ancho ocupado por la

avenida antes de existir éste (puede llamarse erosión localizada o por estrechamiento);

✓ La erosión local en pilares, estribos y otros elementos mojados o rodeados por la corriente.

3.7.1 Socavación en subestructura de puentes

En todo problema de cimentación de subestructura de puentes, la erosión es uno de los aspectos a considerar que han de tratarse con mayor detenimiento.

En las subestructuras de pasos a dos niveles el problema de la erosión puede tratarse por medio de los siguientes procedimientos convencionales

- Sembrando en el talud adyacente al frente del estribo o pila algún tipo de planta que sirva como barrera natural contra la erosión. Con este fin se utilizan usualmente izote, zacate, etc.
- Proveyendo a la superficie expuesta de algún tipo de recubrimiento, entre los que cabe mencionar una capa de pavimento o laja.

Se denomina socavación a la excavación profunda causada por el agua. La socavación ocurre cuando: la cantidad de material que puede ser transportado en la sección del puente es mayor que la cantidad de material que es transportado por el flujo aguas arriba. Si observamos un Hidrograma y lo comparamos con un gráfico de profundidad
vs tiempo, tenemos que en el momento del caudal pico se ve una profundidad menor a la inicial, y a medida que el caudal desciende se puede decir que se va asentando el material que viene con el flujo de aguas arriba.

En el caso de las subestructuras de puentes que sirven como obras de paso para salvar cursos de agua la socavación total en el lecho del río se calcula sumando el resultado de la socavación general del lecho más el obtenido de la socavación local del mismo.

Socavación general del lecho.

La socavación general del lecho se debe a un aumento en la velocidad de la corriente, con lo que aumenta la capacidad de arrastre de las partículas del fondo. Este fenómeno ocurre durante las avenidas y solo cuando la velocidad de la corriente es mayor que la velocidad necesaria para erosionar el suelo. Cuando esto sucede, la socavación es independiente de la velocidad de la corriente.

El método más utilizado para determinar la socavación general del lecho es el de Lischtvan-lebediev, el cual supone que una vez que la velocidad de la corriente ha sobrepasado la velocidad erosiva, la socavación depende únicamente del tirante de aguas existentes.

Ilustración 5: Socavación general en el lecho del río.
Socavación local

La socavación local se produce porque el obstáculo que representa la pila o el estribo al paso del agua, genera componentes verticales de la velocidad que arrastran material del fondo. La socavación se presenta sin que haya avenidas.

La socavación local en estribos es distinta a la socavación local en pilas, por lo que los métodos para determinarlas son distintos.

Socavación local en pilas.

El método más utilizado para determinar la socavación local en pilas es el de Laursen12, el cual supone que la socavación local depende únicamente del tirante de agua después de la socavación general y del ancho y orientación de la pila.

Socavación local en estribos.

Para el estudio de este problema el método recomendado es el de K.F. Artamonov13, este tipo de erosión depende del gasto que teóricamente es interceptado por el estribo relacionado con el gasto total que escurre por el río, del talud que tienen los lados del estribo y del ángulo que el eje longitudinal de la obra forme con la corriente.

La profundidad de socavación viene dada por la siguiente expresión.

\[
S = P_\alpha \times P_q \times P_R \times H_\emptyset
\]
(Ecuación 12)

Donde

\(P_\alpha\) = coeficiente que depende del ángulo \(\alpha\) que forma el eje del estribo con la corriente, su valor se encuentra en la tabla

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>20\textdegree</th>
<th>60\textdegree</th>
<th>90\textdegree</th>
<th>120\textdegree</th>
<th>150\textdegree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_\alpha)</td>
<td>0.84</td>
<td>0.94</td>
<td>1.00</td>
<td>1.07</td>
<td>1.19</td>
</tr>
</tbody>
</table>

13 Idem. (pp. 53).
Pq = coeficiente que depende de la relación Q_1/Q en la que Q_1 es el caudal que teóricamente pasaría por el lugar ocupado por el estribo, si este no estuviese, y Q el caudal total que escurre por el río. El valor de Pq puede tomarse de la tabla

<table>
<thead>
<tr>
<th>Q_1/Q</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pq</td>
<td>2.00</td>
<td>2.85</td>
<td>3.22</td>
<td>3.45</td>
<td>3.67</td>
<td>3.87</td>
<td>4.05</td>
<td>4.20</td>
</tr>
</tbody>
</table>

PR = coeficiente que depende del talud que tienen los lados del estribo. Su valor puede tomarse de la tabla

<table>
<thead>
<tr>
<th>Talud R</th>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>1.00</td>
<td>0.91</td>
<td>0.85</td>
<td>0.83</td>
<td>0.61</td>
<td>0.50</td>
</tr>
</tbody>
</table>

H_0 = tirante que se tiene en la zona cercana al estribo antes de la erosión.

Métodos para reducir la socavación

- Protección contra la socavación local al pie de los estribos

Para el caso de los estribos se pueden hacer una sustitución del material del lecho análoga a la descrita para las pilas, aunque es una mejor solución construir espigones que orienten el flujo de agua, encauzándola de tal manera que no produzca erosión14.

3.8 Estudio de riesgo sísmico.

El estudio de riesgo sísmico dependerá de: La zona sísmica donde se ubicara el puente, el tipo de puente y su longitud, y las características del suelo. En este caso según el reglamento de construcción el municipio de Chinandega se ubica en la zona 3 zonificación sísmica C15.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Grado</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td></td>
<td>0.122</td>
<td>0.097</td>
<td>0.086</td>
</tr>
<tr>
<td>1 B</td>
<td></td>
<td>0.146</td>
<td>0.116</td>
<td>0.103</td>
</tr>
<tr>
<td>1 C</td>
<td></td>
<td>0.171</td>
<td>0.135</td>
<td>0.120</td>
</tr>
<tr>
<td>2 A</td>
<td></td>
<td>0.176</td>
<td>0.139</td>
<td>0.123</td>
</tr>
<tr>
<td>2 B</td>
<td></td>
<td>0.205</td>
<td>0.162</td>
<td>0.144</td>
</tr>
<tr>
<td>2 C</td>
<td></td>
<td>0.235</td>
<td>0.185</td>
<td>0.165</td>
</tr>
<tr>
<td>3 A</td>
<td></td>
<td>0.220</td>
<td>0.174</td>
<td>0.154</td>
</tr>
<tr>
<td>3 B</td>
<td></td>
<td>0.256</td>
<td>0.203</td>
<td>0.180</td>
</tr>
<tr>
<td>3 C</td>
<td></td>
<td>0.293</td>
<td>0.232</td>
<td>0.206</td>
</tr>
<tr>
<td>4 A</td>
<td></td>
<td>0.256</td>
<td>0.203</td>
<td>0.180</td>
</tr>
<tr>
<td>4 B</td>
<td></td>
<td>0.300</td>
<td>0.237</td>
<td>0.210</td>
</tr>
<tr>
<td>4 C</td>
<td></td>
<td>0.342</td>
<td>0.271</td>
<td>0.241</td>
</tr>
<tr>
<td>5 A</td>
<td></td>
<td>0.293</td>
<td>0.232</td>
<td>0.206</td>
</tr>
<tr>
<td>5 B</td>
<td></td>
<td>0.342</td>
<td>0.271</td>
<td>0.240</td>
</tr>
<tr>
<td>5 C</td>
<td></td>
<td>0.391</td>
<td>0.309</td>
<td>0.275</td>
</tr>
<tr>
<td>6 A</td>
<td></td>
<td>0.353</td>
<td>0.280</td>
<td>0.245</td>
</tr>
<tr>
<td>6 B</td>
<td></td>
<td>0.412</td>
<td>0.325</td>
<td>0.286</td>
</tr>
<tr>
<td>6 C</td>
<td></td>
<td>0.470</td>
<td>0.372</td>
<td>0.327</td>
</tr>
<tr>
<td>7 C</td>
<td></td>
<td>0.342</td>
<td>0.270</td>
<td>0.240</td>
</tr>
</tbody>
</table>

3.9 Diseño Estructural del puente

Estado Límite

Los puentes deberán ser diseñados teniendo en cuenta los estados límites que se especificaran, para cumplir con los objetivos de constructibilidad, seguridad y serviciabilidad, así como con la debida consideración en lo que se refiere a inspección, economía y estética.

Para el estado límite de servicio y el estado límite de eventos extremos, los factores de resistencia serán tomados como la siguiente ecuación (todos los estados límite serán considerados de igual importancia).
\[n \sum \gamma_i \varphi_i \leq \varphi R_n = R_r \]
(Ecuación 13)

Para el cual:

\[n = n_D n_R n_I > 0.95 \]
(Ecuación 14)

Donde
\(\gamma_i \) = factor de carga
\(\varphi \) = factor de resistencia (es un multiplicador obtenido estadísticamente que se aplica a la resistencia nominal de acuerdo al material)
\(n \) = factor que relaciona a la ductibilidad, redundancia e importancia operativa
\(n_D \) = factor que se refiere a la ductibilidad.
\(n_R \) = factor que se refiere a la redundancia
\(n_I \) = factor que se refiere a la importancia operacional
\(Q_i \) = efectos de fuerza
\(R_n \) = resistencia nominal
\(R_r \) = resistencia factorizada: \(\varphi R_n \), el factor \(\varphi = 1.0 \)

Estado Límite de Servicio:

El Estado Límite de Servicio se debe considerar como restricciones impuestas a las tensiones, deformaciones y anchos de fisura bajo condiciones de servicio regular. (LRFD Arto. 1.3.2.2). (2005).
El Estado Límite de Servicio proporciona ciertos requisitos basados en la experiencia que no siempre se pueden derivar exclusivamente a partir de consideraciones estadísticas o de resistencia. (LRFD C1.3.2.2). (2005).

Estado Límite de Fatiga y Fractura:

El Estado Límite de Fatiga se debe considerar como restricciones impuestas al rango de tensiones que se da como resultado de un único camión de diseño ocurriendo el número anticipado de ciclos del rango de tensión. (LRFDArto. 1.3.2.3). (2005).
La intención del Estado Límite de Fatiga es limitar el crecimiento de las fisuras bajo cargas repetitivas, a fin de impedir la fractura durante el período de diseño del puente. (LRFD C1.3.2.3). (2005).

Estado Límite de Resistencia:

Se debe considerar el Estado Límite de Resistencia para garantizar que se provee resistencia y estabilidad, tanto local como global, para resistir las combinaciones de cargas estadísticamente significativas especificadas que se anticipa que el puente experimentará durante su período de diseño. (LRFD Arto.1.3.2.4). (2005).

Estados Límites correspondientes a Eventos Extremos:

Se debe considerar el Estado Límite correspondiente a Eventos Extremos para garantizar la supervivencia estructural de un puente durante una inundación o sismo significativo, o cuando es embestido por una embarcación o un vehículo. (LRFD Arto. 1.3.2.5). (2005).

Cargas y factores de cargas

El LRFD Sección 3 de la Norma AASHTO LRFD 2005 específica requisitos mínimos paras cargas y fuerzas, sus límites de aplicación, factores de cargas y combinaciones de cargas usadas para diseñar puentes nuevos. Los requisitos de carga también se pueden aplicar a la evaluación estructural de puentes existentes. Además de las cargas tradicionales, esta Sección incluye las solicitudes provocadas por colisiones, sismos, asentamiento y distorsión de la estructura. (LRFD Arto. 3.1). (2005).

Se deben considerar las siguientes cargas y fuerzas permanentes y transitorias: (LRFD Arto. 3.3.2). (2005).

Cargas permanentes: aquellas que actúan durante toda la vida útil de la estructura sin variar significativamente o que varián en un solo sentido hasta alcanzar un valor límite. Se consideran el peso propio, empuje de tierra y cargas muertas.
Cargas transitorias o Cargas variables: son aquellas para las que se observan variación frecuente y significativa en términos relativos a su valor medio (peso de vehículos y personas). En las cargas vivas de vehículo se considera el número de vías, carga viva del diseño (camión de diseño y sobrecarga distribuida), ubicación de las cargas vivas y fatiga.

Cargas Vivas: se consideran en base a lo establecido por la American Association of State Highway and Transportation Officials (AASHTO). (2005).

Según la AASHTO hay dos clases principales de camiones: los denominados con la letra H seguida de un número y los designados con las letras HS, seguidas también de caracteres numéricos.

Los camiones de tipo H tienen solo dos ejes y el número que le sigue a la H en la denominación indica el peso total del camión cargado. Los camiones HS son vehículos tipo, con tractor y semirremolque, es decir, tres ejes. El número que sigue a las letras HS es el peso del tractor o par de ejes delanteros. El peso del semirremolque o tercer eje es el 80% del peso del tractor.

Fuerzas centrífugas: debe calcularse como un porcentaje de la carga viva de diseño. Se ha considerado que estas fuerzas actúan horizontalmente a 6 ft sobre el nivel de la cubierta y perpendicular al eje del puente.

Fuerzas longitudinales: debe suponerse en el 5% de la carga viva orientada en una dirección más las fuerzas resultantes de la fricción en los apoyos de expansión.

Fuerzas de frenado y aceleración: Efectos dinámicos; Empuje de agua y subpresiones; Variación de temperatura; Cargas sobre veredas, barandas.

Carga de viento: se consideran como cargas móviles que pueden actuar horizontalmente en cualquier dirección.

Efectos de sismo: deben considerarse actuando horizontalmente en el centro de gravedad de la estructura, en la dirección en que se producen los esfuerzos máximos en el elemento.
Cargas excepcionales: son aquellas acciones cuya probabilidad de ocurrencia es muy baja, pero en determinadas condiciones deben ser consideradas (colisiones, explosiones o incendios).

Largueros y vigas

Los largueros son vigas que generalmente van paralelas al eje longitudinal del puente, o sea en la dirección del tráfico. A menudo, dichos largueros deben entramarse con las vigas transversales de piso, pero si están apoyados en las aletas superiores de estas vigas, es conveniente que sean continuos en dos o más paneles.

Las vigas transversales de piso preferiblemente deben ser perpendiculares a las armaduras o vigas principales. Además, las conexiones a estos miembros deben colocarse de modo que permita la unión de arriostramiento lateral tanto a las vigas transversales de piso como a las armaduras o vigas principales.

Diseño de la superestructura

La superestructura está formada por dos elementos:

Elementos principales: es el elemento que transmite las cargas vivas (transito), y muertas (peso propio de la superestructura) a los apoyos extremos e intermedios de la infraestructura (estribos y pilas). Los elementos principales de la superestructura son de acuerdo al tipo de puente:
• Losa: plancha de concreto reforzado o pre esforzado, madera o metal, y sirve de tablero al mismo tiempo.

• Vigas: se utilizan vigas paralelas a la carretera, que soportan esfuerzos de componente vertical y transmiten las cargas recibidas a las pilas y estribos del puente.

• Estructuras metálicas: el acero es un material que soporta muy bien los esfuerzos de flexión, compresión y tracción, esta propiedad se emplea en la construcción de puentes metálicos en arcos o de vigas de acero.

Elementos secundarios: son elementos complementarios de la superestructura siendo necesarios para la estabilidad de la estructura y posibilitan el tránsito por el puente.

• Losa tablero: es el tablero o losa del puente que soporta directamente el tráfico de vehículos o peatones. Cuando es de madera se le llama tablero y cuando es de concreto y metal se le llama losa.

• Diafragmas transversales: son considerados como elementos simplemente apoyados, que sirven como rigidizadores entre vigas y que a su vez transmiten fuerzas a las vigas longitudinales a través del cortante vertical, el cual es transmitido por el apoyo directo de la losa sobre la viga.

• Arriostramiento: mantiene los elementos estructurales en posición correcta, se usan generalmente en las estructuras metálicas y según su ubicación en la estructura puede clasificarse como: arriostramiento del portal, transversal, lateral superior y lateral superior.

• Barandas: elementos de seguridad que se encuentran en los costados del puente, su función es la de canalizar el tránsito y eventualmente evitan la caída de vehículos y personas.

• Calzadas: proporciona el piso para el tránsito de los vehículos y se coloca sobre la cara superior de la losa estructural.
Diseño de la subestructura
Los componentes básicos de la subestructura consisten de los siguientes:

- **Aparatos de apoyos**: son conjuntos estructurales instalados para garantizar la segura transferencia de todas las reacciones de la superestructura a la subestructura y deben cumplir dos requisitos básicos: distribuir las reacciones sobre las áreas adecuadas de la subestructura y ser capaces de adaptarse a las deformaciones elásticas, térmicas y de otras índole inducidas por la superestructura, sin generar fuerzas restrictivas perjudiciales.

- **Estribos**: puede definirse como muro de retención y cimentación que soporta un extremo de la superestructura de un puente y que a la vez transmite las cargas al suelo de cimentación, sostiene el relleno de tierra situado junto a su trasdós y también ofrece protección contra erosión.

Generalmente un estribo consta de 4 partes: el asiento del puente o cabezal, cuerpo, aletones y fundación.

Los aletones son construidos generalmente a base de concreto reforzado o de mampostería de piedra y tienen base de concreto reforzado o de mampostería de piedra y tienen por objeto contener el relleno de los costados y contrarrestar la erosión.

En este trabajo utilizaremos un estribo tipo muro de gravedad

Son construidos generalmente a base de mampostería de piedra aunque se le proporciona en la parte superior una pieza de concreto reforzado, con el objeto de soportar a la superestructura del puente y diluir las cargas concentradas en cargas uniformemente distribuidas, logrando así eliminar esfuerzos concentrados que puedan ser perjudiciales para la mampostería de piedra.

Estos presentan la siguiente ventaja: el costo de los materiales es relativamente bajo, especialmente cuando hay canteras cerca del emplazamiento del puente.

- **Pilas**: son soportes intermedios que tienen como función primordial la transmisión de las cargas horizontales y verticales provenientes de la superestructura hacia las cimentaciones.

- **Fundaciones**: son elementos estructurales que se encargan de transmitir las cargas de superestructura y subestructura al suelo de cimentación, sin sobrepasar su capacidad de carga.

Diseño de muro de contención

El diseño de los muros se realiza para resistir vuelco, deslizamiento y presiones de contacto entre la base del muro y del suelo.

Diseño por vuelco

Diseñar el muro por vuelco significa calcular el factor de seguridad (FS), bajo este efecto el cual debe ser igual o superior a 1.5.

\[
FS = \frac{\sum \text{momentos de las fuerzas estabilizadoras}}{\sum \text{momentos de las fuerzas motoras}} \geq (1.5 \text{ suelo friccional o } 2.0 \text{ suelo cohesivo}) \quad \text{(Ecuación 15)}
\]

Diseño por deslizamiento

Diseñar el muro por deslizamiento significa calcular el factor de seguridad el cual debe ser igual o superior a 1.5 en suelos friccionales y 2.5 en suelo cohesivos.
\[FS = \frac{\sum \text{fuerzas horizontales resistente}}{\sum \text{fuerzas horizontales motoras}} \geq (1.5 \text{ suelo friccional o } 2.0 \text{ suelo cohesivo}) \quad \text{(Ecuación 16)} \]

En el caso de suelo cohesivo

\[C' = \frac{2}{3} C \text{ a } \frac{3}{4} C \quad \text{(Ecuación 17)} \]

\[Fr = C' \times B \quad \text{(Ecuación 18)} \]

Donde

\(C = \) cohesión obtenida en un ensayé rápido

En el caso de los suelos friccionales:

\[Fr = W \times f \quad \text{(Ecuación 19)} \]

Donde

\(f = \) coeficiente de fricción entre el suelo y la base del muro

Se puede considerar \(f = \tan \Phi \), o tomar como valor de \(f \) los siguientes:

Tabla 7. Valores de coeficiente de fricción. Fuente: Carlos Crespo, mecánica de suelo (2007).

<table>
<thead>
<tr>
<th>Suelo</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo granular grueso sin limo</td>
<td>0.55</td>
</tr>
<tr>
<td>Suelo granular grueso con limo</td>
<td>0.45</td>
</tr>
<tr>
<td>Limo</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Los muros de contención se utilizan para detener masas de tierra u otros materiales sueltos cuando las condiciones no permiten que estas masas asuman sus pendientes naturales. Estas condiciones se presentan cuando el ancho de una excavación, corte o terraplén está restringido por condiciones de propiedad, utilización de la estructura o economía.
Verificación de deslizamiento: Se verifica que la componente horizontal del empuje de la tierra (Fh) no supere la fuerza de retención (Fr) debida a la fricción entre la cimentación y el suelo, proporcional al peso del muro. En algunos casos, puede incrementarse (Fr) con el empuje pasivo del suelo en la parte baja del muro. Normalmente se acepta como seguro un muro si se da la relación: Fr/Fh> 1.3 (esta relación se puede llamar también coeficiente de seguridad al deslizamiento).

Verificación de volteo o vuelco: Se verifica que el momento de las fuerzas (Mv) que tienden a voltear el muro sea menor al momento que tienden a estabilizar el muro (Me), es decir: Me/Mv> 1.5 (coeficiente de seguridad al volteo).

Verificación de la capacidad de sustentación: Se determina la carga total que actúa sobre la cimentación con el respectivo diagrama de las tensiones y se verifica que la carga trasmitida al suelo (Ta) sea inferior a la capacidad portante (Tp), o en otras palabras que la máxima tensión producida por el muro sea inferior a la tensión admisible en el terreno. Es decir: Tp/Ta > 1.02 (coeficiente de seguridad a la sustentación).

Verificación de la estabilidad global: Se verifica que el conjunto de la pendiente que se pretende contener con el muro tenga un coeficiente de seguridad global > 2.
4. **CARACTERISTICAS DEL AREA DE UBICACION DEL PUENTE**

4.1 **Aspectos Geográficos**

La cabecera municipal está ubicada a 219 Km. de Managua, capital de la República con una **Posición geográfica** entre las coordenadas 13° 11' de latitud Norte y 86° 55' de longitud Oeste, tiene como límites los siguientes:

Al Norte: Municipio de Cinco Pinos

Al Sur: Municipio de Somotillo

Al Este: Municipio de Cinco Pinos

Al Oeste: República de Honduras

La población total del Municipio es de 9,376 habitantes, correspondiendo a una población Urbana de 1,910 habitantes y a una población Rural de 7,466 habitantes respectivamente. Dentro de los accidentes geográficos no posee dentro de su circunscripción fenómenos orográficos importantes, a excepción de algunas lomas que alteran suavemente la planicie del territorio municipal atravesado por el río Guasaule y sus pequeños afluentes, con una altitud sobre el nivel del mar de 180. Metros.

4.2 **Aspectos económicos**

El estado actual del municipio se caracteriza por 3 elementos principales: a) una economía de agro-dependencia, b) alto crecimiento poblacional en los últimos 50 años y c) degradación ambiental (desertificación) acelerada.

La decadencia económica y social de Santo Tomás, en general, sigue la historia del empobrecimiento de Nicaragua en los últimos 30 años. A partir de la década de los años 50 la lucha para la tierra se agudiza causada entre otros por la expansión de las fronteras algodonera y ganadera. En la misma época la población creciente comienza con la deforestación masiva de las laderas para fines del cultivo de granos básicos y la ganadería extensiva, y se fue acrecentando la degradación ambiental en
las décadas de los años ochenta y noventa, agudizada por huracanes como “Juana” y “Mitch”. A todo esto se suma el alto grado de desempleo causado por la caída de los mercados de algodón, banano y café, y finalmente el impacto socioeconómico producido en la década de los ochenta por la guerra civil.

Desde los años ochenta hubo varios intentos para llegar a un ordenamiento territorial, pero nunca se pudo materializar. El componente para establecer y aplicar normas de manejo ambiental todavía se encuentra en un estado de desarrollo incipiente.

En correspondencia con estas complejas relaciones entre el nivel regional, departamental y local el PDD básicamente propone y estructura un escenario de desarrollo humano que vincula, por un lado las acciones nacionales y regionales que tienen impacto en el departamento con las iniciativas y propuestas que provienen de las instituciones, productores, ONG, gremios, iglesias, y la ciudadanía comprometidos con el desarrollo del territorio con el fin de lograr mejora de la calidad de vida para su población.

El rol fundamental de esta propuesta es conjugar las potencialidades productivas de alta competitividad en los municipios costeros de este Departamento, con las actividades productivas agroforestales, de menor competitividad, de los municipios del norte, sobre la base del desarrollo diferenciado pero complementario de la producción; se prevé la construcción de un sistema jerarquizado de asentamientos humanos que estructure la cabecera departamental y las principales ciudades con los centros funcionales a proveer servicios sociales a las comunidades dispersas.

Esta conjugación entre sistema de asentamientos y actividad productiva rural, pasa a través de un análisis territorial de las potencialidades y restricciones que permite aprovechar en forma sostenible (ambiental, social, Productivo e Institucional), los recursos naturales y humanos del territorio.
4.3 Aspectos Historiográfico

4.3.1 Evolución Histórica de la Ciudad

Reseña histórica

Según la historia de SANTO TOMAS DEL NANCE, no existen datos recientes de su supuesto origen indígena. Este municipio, tiene más de 100 años de pertenecer al Departamento de Chinandega, conociéndosele originalmente como SANTO TOMAS DEL NANCE.

Por Ley legislativa que emitiera el Congreso el 9 de Abril de 1889 y sancionada por el Presidente Evaristo Carazo. Fueron declarados Pueblos, los Valles de Potrero Grande, del Nance, SANTO TOMAS del Norte y Cuajiniquilapa del departamento de Chinandega denominándolos San Pedro de Potrero Grande, SANTO TOMAS del Nance y San Francisco de Cuajiniquilapa.

4.3.2 Análisis de la creación de su cuadricula urbana

El Casco Urbano del Municipio de Santo Tomas del Norte fue tomando características urbanas apartar de los años de 1920-1930 debido a la aumento y concentración de la población. El casco urbano del municipio de Santo tomas del Nance se divide en dos sectores o distritos: Distrito I y Distrito II, dentro de cuadricula Urbana se asientan 1,450 Habitantes y fuera de ella en su expansión Urbana, se asientan 460 Habitantes haciendo una totalidad de 1,910 Habitantes.

La cuadricula de Santo Tomas es irregular por su topografía y sus pendiente entre 15 % en lo más plano y en lo más alto entre el 35 y el 50 % de pendiente. Sus calles no han obedecido a un plan de regulación urbano constante, por lo que los habitantes caminan sobre las calles vehiculares ya que las aceras son mínimas y no hay derecho de construcción de vivienda. La nomenclatura urbana es escasa sin un mobiliario Urbano que impacte e indique la conducción de ciudad. En otras palabras se cataloga como una ciudad pequeña rural y con pocos servicios que ofertar a la población Municipal así como al visitante ocasional o temporal que se acerca al Municipio de Santo Tomas.
4.3.3 Momento actual

Actualmente el área urbana tiene una extensión territorial aproximadamente de 16 Mz2, cuenta con dos calles principales de Norte a Sur y el restante de calle son avenidas e intersecciones que vienen de Este a Oeste.

4.3.4 División de barrios

El Municipio de Santo Tomás del Norte en su área Urbana, comprende los dos Distritos I y II: 9 Manzanas para el Distrito I y 7 Manzanas para el Distrito II ambos distritos con características heterogéneas; a partir del año 2003, se inicia un Proyecto de levantamiento catastral Municipal para valorar las propiedades y poder contar con un IBI (impuesto de Bienes Inmuebles) con el objetivo de incrementar el ingreso de recaudación para la Municipalidad.

En la actualidad, nuestra ciudad urbana no cuenta con barrios originales o tradicionales como en otras ciudades del interior del país, dado que Santo Tomás es un Municipio con características rurales y desde su creación los primeros pobladores se fueron ubicando de forma dispersa a la orilla de los árboles de nancite y de ahí su proveniencia del nombre del Municipio18. Debemos señalar, que el Municipio en términos Urbanos tiene en su totalidad 6 Distritos de los cuales 2 son Urbanos (zona antigua) y 4 son suburbanos o del área de expansión de ciudad.

4.3.5 Delimitación de lo Urbano

El Caso Urbano tiene límites físicos de índole comunitaria

Al Norte. Escuela Pedro Joaquín Chamorro, Propiedad Justo Pastrana

Al sur. Propiedad Clementina Tabora, Ercilla Cadena y Colonia España

Al este: Propiedad Ercilia cadena, Moisés Moreno y Efraín Rivera

Al oeste, Propiedad Luís Martínez, Gabriel Ramírez y Paula Tabora

En la década de los 80s, la Comunidad de el Limón desaparece a causa de la confrontación bélica con el ejército de Nicaragua, paralelamente nace la Comunidad

18 Técnico: Francisco Rodríguez - Unidad técnica Municipal de Santo Tomas – JULIO 2006.
de Villa Camilo que era originaria de la comunidad el panal del municipio de San Pedro del norte y el tamarindo y la jaquita del municipio de Cinco Pinos, porque los mojones históricos pertenecían a Santo Tomás; en los 90s, la delimitación territorial de Santo Tomás se extendió rebasando hasta los límites de Cinco Pinos, porque en ese momento eran zonas despobladas y óptimas para una reubicación poblacional.

- **Casco Urbano**

Cabecera Municipal del mismo nombre del Municipio de Santo Tomas del Nance, hoy en día tiene sus calles embotonadas, enchapadas y adoquinadas, adolece de zonas peatonales para la buena circulación del transeúnte, la imagen urbana no tiene una secuencia dado que aparenta ser una pequeña ciudad que se fue dando por suposiciones en el tema de la propiedad de la tierra, en otras palabras los solares no estaban homogéneos porque las familias eran abundantes y al momento de una herencia se buscaba una repartición no uniforme, lo que en este momento actual se aprecia el comportamiento de un Urbanismo pobre que adolece de señales viales, iconos, Hitos históricos, mobiliario urbano, tipificación de la vivienda, entre otros. Pero tiene un positivismo de pensamiento en grande, y lo que falta es una conducción cultural y armónica para alcanzar un Urbanismo con todas las herramientas suficientes para optar a categoría de ciudad rica materializada en un desarrollo sostenido por sus pobladores y sus gobernantes.

4.4 Aspecto físico natural (urbano - rural)

Según la Regionalización Biofísica para el Desarrollo Agropecuario; los Departamentos de Chinandega y León, MAGFOR 1999, el municipio tiene dos zonas claramente diferenciadas:

“La zona sur perteneciente a la llamada *planicie de Somotillo*, esta constituye el 19% de las tierras (780 hectáreas) del municipio su suelos se caracterizan como *mollisoles*, poco profundos y moderadamente erosionados, también hay suelos de textura muy pesada y drenaje imperfecto (*vertisoles*), bajo la presencia de un período canicular definido que limita el desarrollo de la agricultura a cultivos de

19 Técnico: Francisco Rodríguez - Unidad técnica Municipal de Santo Tomas – JULIO 2006.
20 Plan de Desarrollo Municipal de Santo Tomas del Norte. Año 1999
subsistencia: en las zonas húmedas se cultivan en los meses de noviembre a enero melones y sandías las que se comercian con Honduras”.

El restante 81 % (3321 hectáreas) pertenecen la “subregión montañas de Cinco Pinos, las que forman parte de la región biofísica del Sistema Volcánico Montañoso, conformado por una cadena de pequeñas cordilleras y lomeríos encadenados de baja y mediana altura que se localiza en el sector noreste del departamento. Predominan las tierras de vocación forestal para la protección y conservación de cuencas hidrográficas y para la producción de especies energéticas y en menor proporción tierras destinadas para la actividad pecuaria bajo manejo extensivo y agrícola bajo manejo agroforestal”.

- **Geomorfología**

La geomorfología del Municipio de Santo Tomas se encuentra en un manto rocoso a orillas del río Guasaule, se considera que topográficamente es terreno quebrado con pronunciaciones elevadas y suelos arcillosos de poca fertilidad con pequeñas pendientes del 35 al 50% en la parte Norte; y del 12 al 15% en la parte Sur tocando las Comunidades de Vado Ancho, Ceiba Herrada, y parte de paso Hondo21.

En el Municipio se destacan los cerros más importantes: El Cerro Nana Chepa que se encuentra bordeando la parte Este del río Guasaule, otro cerro de importancia es el Chocolate ubicado en el centro del Municipio, y el otro es el cerro Santa Inés.

- **Orografía**

El Municipio se encuentra ubicado en las subcuencas: Guasaule, y Gallo, que pertenecen a la Cuenca alta número 58 del río Negro; es un excelente potencial natural no solo para el Municipio de Santo Tomas sino para el resto de Municipios santos.

- **Clima**

El clima del Municipio es cálido caracterizado por una marcada estación seca, de 4 a 6 meses de duración, se destacan dos estaciones: la lluviosa comprendida entre los meses de Mayo a Octubre, y la estación lluviosa entre los meses de Noviembre a
Abril con una temperatura media anual que oscila entre los 30° C. a 32° C, con una precipitación anual de 800 - 1,500 mm\(^2\).

Tipos de suelo

En el Municipio de Santo Tomás se caracterizan como *mollisoles*, poco profundos y moderadamente erosionados, también hay suelos de textura muy pesada y drenaje imperfecto (*vertisoles*), bajo la presencia de un período canicular definido que limita el desarrollo de la agricultura a cultivos de subsistencia: en las zonas húmedas Vado Ancho y Ceiba herrada se cultivan en los meses de Noviembre a Enero melones y sandías las que se comercian con Mercado local y el vecino país de Honduras. Estos suelos son de consistencia pesada (arcillosos), con una topografía irregular y desprovista de árboles, condición que ha permitido el lavado de la fertilidad de los suelos y la exposición superficial de abundantes rocas.

Uso actual de la tierra

El Municipio de Santo Tomás según el Mapeo de MAGFOR (1999), aborda 7 tipos de uso de la tierra: Bosque abierto, bosque cerrado, cultivos anuales, pasto más árboles, pasto más maleza, pasto mejorado, vegetación exhaustiva \(^2\)\(^3\) Hay una dispersión del bosque cerrado y vegetación exhaustiva por todo el Municipio de forma mínima, en comparación a los tres tipos de pastos que abarcan casi en un 80% sobre la totalidad del uso de la tierra.

\(^{22}\) Plan de Desarrollo Municipal de Santo Tomas del Norte. Año 1999

\(^{23}\) Plan Marco de Ordenamiento Territorial- Solidaridad Internacional- Dic. 2005
Uso potencial del suelo

El uso potencial del suelo, muestra que el área cultivada en agricultura del municipio es de 1,749 hectáreas de su territorio, 1,456 hectáreas es el área de pastoreo de la ganadería.

De acuerdo a lo expresado por los Comunitarios, en el Municipio se aplica la tecnología manual en un 45% y la mecanizada y manual en un 2 y 4% respectivamente.

Los cultivos principales de Santo Tomás son: el millón, el maíz y el ajonjoli. El hato ganadero es de 1,372 cabezas de ganado que son utilizada para la producción de doble propósito: carne y leche para el consumo básicamente local. Los rendimientos productivos en la agricultura son bajos y equivalentes a los que se logran en los otros municipios de la zona.

La agricultura se constituye en la actividad más importante del municipio sin embargo dado lo pequeño de las parcelas, el agotamiento de los suelos y el bajo nivel tecnológico no permite a los pequeños productores mayores perspectivas de desarrollo. Producen para complementar la subsistencia, en la mayoría de los casos, ya que en los últimos años han requerido asistencia alimentaria.
Otra importante área de ocupación en el municipio es el comercio informal el cual se ha desarrollado por las facilidades de comunicación inter-fronterizo con Honduras.

Tal como puede leerse en el recuadro superior, las recomendaciones técnicas indican la necesidad de mejorar la utilización de las tierras de Santo Tomás lo cual se lograría con un recambio hacia la economía forestal, reduciendo el área de cultivos anuales a un mínimo de 407 hectáreas.

Cuencas Hídricas (potenciales y limitantes)

Recursos Hídricos

Referente al recurso de agua para uso de la población, se nota que las fuentes (pozos y ojos de agua) están destinadas totalmente al consumo humano y los animales se llevan a aguar al río, (comarcas ubicadas en la parte alta del municipio), estos tienen pilas apartes.

El municipio de Santo Tomás aloja buena parte de la trayectoria del río Guasaule, así como de otros riachuelos que son afluentes orientales del curso sur del Guasaule. Por lo cual se puede afirmar que el arrastre que se produce en su territorio es causante del asolvamiento aguas abajo, esto conlleva a la necesidad de tomar
acciones para preservar el río y evitar el arrastre de suelos agrícolas con medidas adecuadas de conservación de suelos y aguas.24

Potencial para Riego

El potencial para riego, tanto de aguas superficiales como subterráneas es bastante limitado y no ha sido estudiado al detalle. Se considera factible la construcción de micro presas y pequeños proyectos de riego, represando las aguas de las quebradas y del río en el invierno. Los niveles del agua subterránea en Santo Tomas se encuentran a un promedio de 15 a 25 metros de profundidad en los lugares más altos, también se puede fomentar el aprovechamiento de riego por gravedad ya que existen algunas condiciones en el municipio.

- **Minería**

Yacimientos de Arcilla

El Municipio de Santo Tomás cuenta con recursos naturales no renovables, entre ellos Arena, Arcillas para elaborar cerámica y piedrín o balastre para reparar los caminos (Macadán) Hay balastre para los caminos en: Ojo de Agua, Vado Ancho y Paso Hondo.

Yacimientos de Oro:

Hubieron minas (El Granadillo) y hay planes de exploración de nuevas minas de oro (Cerro Santa Inés, Ceiba Herrada y Cerro El Burro, Paso Hondo).

- **Industria**

El Municipio cuentan con materiales no metálicos (piedra, arena, barro, tagüe, caliche, etc.) La arena de las vegas del río mayores es solo de uso local, se elabora además ladrillos cuarterones, tejas y ollas: en las comunidades del Rincón, La Uva, El Granadillo, Ceiba Herrada, Los Jovitos. Además existen pequeñas industrias de artesanía de petate y ebanistería que se comercializan localmente y en Departamento

4.5 Zonificación Urbana del Modelo Actual del Municipio de Santo Tomas del Norte

Santo Tomas cuenta con un sistema vial con conexión internacional está estructurado en Cinco Zonas que se reflejan en el siguiente mapa:

4.5.1 Potencialidades y Limitantes

Santo Tomas del Norte por encontrase unido a una conexión vial que lo comunica con los pueblos santos, le brinda una oportunidad para el comercio con los pueblos vecinos de la republica de Honduras por lo que sería una opción para el desarrollo de productos de exportación estas fortalezas pueden ser atributos para promover inversiones de capital además se dispone de agua (río Guasaule el Salto, cholote y las Marías) y algunas tierras planas aptas para el cultivo de hortalizas de humedad y riego. Las características de este suelo le otorgan algunas ventajas competitivas en el desarrollo de la economía forestal. Es un municipio limítrofe con cooperación
extranjera su mayor potencial es estar muy próximo a la carretera Panamericana principal ruta del comercio internacional.

En base a lo antes expuesto, al municipio de Santo Tomás se le ha dividido en cinco zonas, las cuales son las siguientes:

4.5.1.1 Zona uno

Está compuesta por tres comunidades; Villa Camilo, Granadillo y la Uva, su topografía es ondulada con elevación de 380 metros sobre el nivel del mar, en su parte más alta, cuenta con los siguientes servicios básicos: alumbrado eléctrico domiciliar, paneles solares, Puesto de Salud, Escuelas primarias completas, agua potable, en un 15%, existen además dos pozos perforados, predomina la religión católica en un 80%, sus suelos son áridos y rocosos debido al mal manejo, se hacen cultivos de subsistencia como: (maíz, Millón, en menor escala fríjol y caña de azúcar), posee yacimientos de arcilla propios para la elaboración de ladrillo cuarterón, teja, minerales para la explotación de oro, sus tierras son de vocación forestal ya que gran parte de ellas está a más del 38% de pendiente.

4.5.1.2 Zona Dos

Está compuesta por tres comunidades; Ojo de Agua, Quebrada Arriba y los Jobito, su topografía es quebrada, es la parte intermedia del municipio, sus suelos son franco arenoso, semi-áridos predominan los cultivos de subsistencia (Maíz, Millón, Fríjol y cultivos de hortaliza en menor escala), posee talleres de ebanistería, fabricación de hamaca, petates, ollas de barro ya que existe yacimiento de arcilla, sus servicios básicos, alumbrado eléctrico domiciliar, paneles solares, escuela de primaria completa, puesto de salud, Cementerio, cuatro pozos perforados y un hidro-puro, predomina la religión católica 85%. Posee tierras de vocación forestal.

4.5.1.3 Zona Tres

Está compuesto por el urbano y sus Barrios, su topografía es ligeramente semi plana ondulada sus suelos son franco arenoso propios para el cultivo de maíz, sorgo, fríjol y hortalizas, ya que parte de su territorio está asentada en la micro cuenta binacional río Guasaule, es de vocación forestal, sus servicios básicos: escuela primaria, Instituto, alumbrado eléctrico domiciliar y Publico, telefonía ENITEL,
centro de Salud, Juzgado Local, Policía Nacional, Parque, Cementerio y organizaciones no gubernamentales, predomina la religión católica en un 70%. No posee mucha expansión para el crecimiento población de futuro.

4.5.1.4 Zona Cuatro

Está compuesto por dos comunidades; Vado ancho y Ceiba Herrada, su topografía es semi Plana, es la parte más baja del Municipio sus suelos son franco arenosos fértiles propios para el sistema de irrigación, se cultiva Maíz, Millón, Ajonjolí, Sandia, y Hortaliza, se cultiva con fines de comercialización tanto a nivel local como externos. Según estudios revelados por CONDEMINAS, existen yacimiento de oro en el Cerro Santa Inés, se explota el barro para la elaboración de ladrillo cuarterón y teja, sus servicios básicos: alumbrado eléctrico domiciliar en un 88%, Cementerio, escuela Primaria completa, dos pozos perforados, además presta condiciones de comercio debido a que limita con municipios de la zona sur de honduras y se puede establecer en el futuro un puerto terrestre, cuenta también con el manto acuífero más grande del municipio según estudio de pre factibilidad financiado por mella de vallet.

4.5.1.5 Zona Cinco

Está compuesta por dos comunidades; Paso Hondo y las Marías, su topografía es Ondulado y posee serranías propensa a deslaves y erosiones por lo que es necesario proteger los recursos naturales existentes a través de proyectos de diversificación de cultivos y reforestación y sensibilización a la población, sus suelos son áridos y rocosos los cultivos son de subsistencia tales como maíz, millón, fríjol y hortaliza en pequeña escala, en la parte más baja existe escasez de agua en el verano, sus servicios básicos son: alumbrado domiciliar, escuela primaria completa, anexo del Instituto, puesto de salud, Cementerio, puestos de agua a través de un mini acueducto el cual es llevado por gravedad desde la comunidad de las marías y es necesaria la ampliación de la red para el abastecimiento del resto de la población, predomina la religión católica en un 80%.
4.5.2 Limitantes

a) Escasez e inaccesibilidad de agua potable

b) Zonas con riesgos de derrumbes e inundaciones

c) Falta de mantenimiento de los caminos primarios y secundarios

d) No contar con un mercado local, que permita la ubicación de algunos productos no tradicionales producidos en el municipio, a consecuencia de esto los agricultores se ven obligados a seguir realizando la actividades tradicionales para obtener dinero a lo inmediato el cual el medio ambiente es el más afectado.

e) Concentraciones poblacionales ubicadas en lugares inadecuados.

f) Alto índice de analfabetismo.

g) Sitios mínimos para asentamientos humanos.

h) Poco acceso al crédito por falta de garantía.
4.6 Zonas Potenciales de Desarrollo

4.6.1 Zona de Conservación

Por sus características geomorfológicas la zona de conservación se encuentra ubicada en la parte norte de la cabecera municipal, por lo cual es necesario llevar a cabo un proceso sobre el uso adecuado del suelo según su potencial, de subsistencia económica, basado en el artículo 7 de ley de municipios el cual tiene las siguientes competencias:

☑ Planificación, formación, control del uso del suelo del desarrollo Urbano y Rural.

☑ Desarrollar, conservar, y controlar el uso racional del medio ambiente y los recursos naturales como base del desarrollo sostenible del municipio fomentando iniciativas locales en esta zona y contribuyendo a su monitoreo vigilancia y control, en coordinación con las instituciones Nacionales y municipales. Apegados a la ley 217.
✔ Establecer planes de manejo Forestal para el aprovechamiento racional y eco sostenible de los recursos naturales.

4.6.2 Zona de Expansión

Está constituida por la delimitación territorial de la parte más plana del municipio que es la más viable para destinar el nivel del crecimiento poblacional de Santo Tomas del Norte y que tendrá características urbanas, en la implementación del Ordenamiento territorial.

4.6.3 Zona de Explotación

Esta zona de explotación carece de normas reguladoras para la agricultura y la ganadería por lo que debería regir normas para un manejo eco sostenible de la zona (ojos de Agua, rivera de ríos, riachuelos y estabilización de cárcavas) esto nos daría el control de la ampliación de la frontera agrícola y ganadera.

Además establecer normas para tacotales, espacios de montañas obligando a los propietarios ausentes del conocimiento de las mismas, también se deben realizar planes de estudios de costos y beneficios de los usos de la tierra recomendados de la aplicación de las medidas de la conservación de los suelos, estos detalles específicos, el tiempo los costos y beneficios deben ser discutidos con las y los productores es importante que el gobierno municipal establezca los incentivos necesarios para avanzar hacia el desarrollo económico propuesto.

4.7 Identificación del proyecto

Se identificó el proyecto con nombre de puente vehicular para la comunidad de Paso Hondo del municipio de Santo Tomas del Norte. El proyecto está en una etapa de evaluación por la alcaldía de Santo Tomas del Norte para su posterior aprobación. Ver la sección de anexo (Mapa 4).

4.8 Oferta y demanda de la situación actual

Con la ejecución de un puente vehicular se pretende ofrecer a la comunidad seguridad, comodidad y un cruce para todo tiempo. El puente vehicular tendrá una demanda de entre 50 a 80 vehículos (ir y venir) que irá aumentando conforme al tiempo.
4.9 Beneficio del proyecto

Con la construcción del puente se pretende lograr:

- Mejorar la calidad de vida de sus habitantes.
- Proveer a los habitantes de zonas urbanas, rurales y fronterizas una vía de acceso para transportarse.
- Acabar con el problema de inaccesibilidad de los habitantes y disminuir las enfermedades.
- Beneficiar a otras comunidades en lo que respecta al comercio.
- Dar oportunidad a los niños y adolescentes de una buena educación, con lo cual se disminuirá el analfabetismo.

4.10 Alternativas de solución al problema

No se recomienda realizar mejoras a la estructura ya que el costo es elevado y no presentará una vida útil larga.

La única alternativa es la sustitución de la estructura en su totalidad por una nueva. Entonces se propone:

- Diseñar un puente vehicular de claro simple con vigas de acero y subestructura de concreto compuesta por estribos.
5. **ESTUDIOS INGENIERILES DEL PUENTE**

5.1 **Estudio Topográfico**

Entre la información más importante obtenida está:

- El perfil del lecho del cauce
- Las secciones transversales agua arribas y aguas abajo del cauce
- Curva de nivel para el estudio del agua

Con esto se conocerá la geomorfología del curso del agua, la topografía de la zona.

5.1.1 **Trabajo de Campo**

El levantamiento se realizó utilizando métodos topográficos terrestre con equipo electrónico de precisión (Estación total LEICA, GPS), con 1 prisma, una libreta de campo, un trípode, un anotador y 2 ayudantes.

Primeramente se realizó el día 22 de noviembre la limpieza de la zona con el objetivo de evitar cualquier obstrucción en el momento de realizar levantamiento con el prisma que es de tipo circular, esto conlleva a realizar el levantamiento más veloz y que el aparato registre la lectura eficientemente, ya que con una hoja que estorbe el aparato marca error en la medición obstrucción del rayo láser.

El levantamiento se realizó los días 23 y 24 solo medio día, primeramente se midió 100 metros aguas arribas y 100 metros aguas abajo en el centro de la corriente del rio, como lo indican las normas AASTHO (2005), con una cinta de 30 metros, con intervalo a cada 10 metros para trazar las secciones transversales del rio, tomando como referencia tres punto a cada lado de la corriente, para referenciar el pie y hombro de la zona del rio. El plano de ubicación del puente indicara tanto los accesos como casas aledañas al proyecto, el cual se observara en los anexos al final de esta documentación.
Los objetivos de este estudio topográfico son: realizar los trabajos de campo que permitan elaborar los planos topográficos, proporcionando información base para los estudios de hidrología e hidráulica, geología, geotecnia, así como de ecología y sus efectos en el medio ambiente. Establecer puntos de referencia para el replanteo si llega a ejecutarse.

Procedimiento que se realizó iniciando el levantamiento:

1. Se ubicó el trípode en el primer punto (PI-1) que se referencio en una roca, se coloca la estación total, se encendió, aparece en la pantalla la marca del instrumento, seguido apareció la plomada láser para centrar el trípode en el punto de inicio, una vez centrada la plomada en el punto aparece en la pantalla la nivelación del aparato con los tornillos nivelantes del mismo, muestra un triángulo que nos indica para donde se giran los tornillos para centrar las burbujas horizontal y vertical de la estación, una vez nivelado el aparato el triángulo en la pantalla marca un check (indica que esta nivelado y listo para su uso), le damos ok con F4.

2. Se coloca el GPS para amarrar la primera coordenada a la par del punto de inicio, se lee la coordenada cuando el aparato tenga una precisión de 1m como máximo, dando como coordenada en X(E)=1454546.000m y en Y(N)=512737.000m y Z=100m.

3. Entramos en el menú, formato de programa, topografía, configuración de trabajo y seleccionamos nuevo el nombre del archivo es UNAN y seleccionamos ok. Seguido el aparato vuelve a la pantalla anterior, seleccionamos estacionamiento (F2), y empezar (F4), nos aparece otra pantalla donde aparece la opción método y se selecciona orientación con ángulo, en estación ponemos el número de nuestro primer punto y damos enter, nos envía a otra pantalla donde nos indica que el nuevo trabajo necesita coordenadas damos ok, escogemos el icono XYZ e introducimos los valores correspondiente del segundo punto, enter, y ok.

4. Una vez definida las coordenadas ponemos la altura del instrumento (1.485m), la altura del prisma (1.24m), teniendo el aparato enraizado al norte con la brújula seleccionamos Hz =0.
5. Una vez realizado el punto 4, procedemos a leer el segundo punto, en este caso se empezó leyendo aguas abajo, una vez fijado el objetivo se presiona la tecla ALL (F1) o de forma táctil con el dedo en una ranura que se encuentra en el costado derecho del aparato, se guarda en seguida las coordenadas y la distancia de ese punto, y así se procede a leer los siguientes puntos.

Ilustración 10. Demostración del instrumento realizando la primera lectura.
Fuente. Elaboración propia.

6. En punto de cambio (PI-29), se realiza el primer punto y entramos en menú, formato de programa, topografía, configuración de trabajo y se selecciona el trabajo a utilizar creado anteriormente como UNAN, y damos ok, volvemos a la pantalla anterior y seleccionamos estacionamiento (F2) y luego empezar, en la opción método seleccionamos orientación por coordenada, escribimos el número de esa estación (PI-29) en la cual esta plantada la estación, enter y ok. En la pantalla nos pide el punto objetivo en este caso el (PI-1), aparece una pantalla con el punto seleccionado y damos ok, nos enrazamos en la plomada del punto anterior con el visor y si el ángulo coincide con el mostrado en nuestra brújula seleccionamos REC (F3), después F4 y se vuelve a medir la altura del instrumento (1.289m) y la altura del prisma es la misma, así que se procede a medir los otros puntos, seleccionamos F4 para calcular estacionamiento y otra vez F4 para empezar.
7. Se realiza otro punto de cambio (PI-53), se repite el paso 6 y la nueva altura del instrumento es de 1.344m.
8. Los datos del levantamiento con la estación los exportamos a una memoria para descargarlos en una computadora y así poder realizar el diseño de los planos. Los datos se guardan en formato DXF.

5.1.2 Trabajo de Gabinete

Consiste en la recepción de datos crudos y la preparación del mismo para la obtención de las coordenadas ajustadas definitivas del proyecto. Nos auxiliamos de las herramientas que ofrece el programa de “AutoCAD Land desktop en la versión 2004” y “civilcad V6.5” los cuales tiene la facilidad de crear las curvas y secciones con más eficiencia.

A continuación se presenta una descripción generalizada de los programas para demostrar el procesamiento de los datos levantados con la estación total llevados al distinto software los cuales fueron utilizados para resolver la información del proyecto.

AutoCAD Land desktop versión 2004

Pasos a seguir:
1. Abrir el programa desde escritorio en el ícono.
2. En la ventana start up nos muestras los proyecto que hemos realizado en el programa y le damos en new para crear un nuevo proyecto
3. Escribir el nombre del proyecto, una vez escrito el nombre nos aparecerá la ventana Project details, donde pondremos los detalles del proyecto.

4. Buscamos el archivo donde están los datos del levantamiento y abrimos y vemos en que formato está guardado en este caso aparece el punto, este, norte y la elevación, separado por espacio (P E N Z) así que cerramos y volvemos al programa.

5. Seleccionamos POINTS seleccionamos Import/Export points, escogemos Import points, aparece una ventana (Format Manager- Import Points) aparece formato ahí seleccionamos el formato que tiene nuestro archivo en este caso PENZ (space delimited), Source File ahí seleccionamos nuestro archivo y seguido OK, aparece otra ventana donde seleccionamos Ok y aparece una ventada donde está procediendo a la descarga de puntos y nos aparece todos los datos de base que proporciono la estación total.
6. Creamos las curvas de nivel donde primero se crea la superficie seleccionamos Terrain, después Terrain Model Explorer, la cual tiene dos carpetas seleccionamos Terrain dar click derecho nuevo, nos aparece la nueva superficie creada con el nombre de superficie01, la base la creamos con grupos de puntos damos ok y seleccionamos superficie 01, después Build, nos aparece Build Superficie01, nos vamos a la parte de debajo de la ventana y seleccionamos Use points group data, le damos aplicar y aceptar y aparece una ventana procesando la informacion y en la pantalla de dibujo aparecen creada la superficie, después volvemos a seleccionar Terrain, seleccionamos Create, seleccionamos en Intervalo la opción Both Minor and Mayor y seleccionamos Style Manager y en la opción de Smoothing Options le damos 5, esto es para suavizar el curvado de las curvas, ok y ok y acepto y aparecen las curvas de nivel, la capa 3D la guarda siempre el programa SRF-VIEW y desactivamos esa capa, después editamos la capa de las curvas menores dando otro color le damos aceptar y ok y ya están lista nuestra capas.

Seguido procedemos a crear el perfil del río y las secciones transversales.

CIVILCAD V6.5

Es un programa diseñado para usarse fácilmente trabajando en conjunto con AutoCAD 2010, se utilizó para dar más suavizado a las curvas de nivel, los pasos a seguir son lo siguiente:

1. Seleccionar el ícono correspondiente a Civilcad y presionar (enter).
2. Al abrir el programa aparecerá en la barra de menú de pantalla superior la opción civilcad, el cual trae una serie de opciones útiles para el diseño.

Seleccionar la opción importar puntos, seleccionar el tipo de archivo (X Y Z), luego OK.

3. Aparecerá otra caja de dialogo donde se selecciona el archivo PUNTOS.DAT localizado en el directorio civilcad, después de un breve momento aparecerá los puntos dibujados en la pantalla.

4. Definir el área de trabajo seleccionando margen del menú lateral, seleccionando el tamaño D, escala 1:1000. Al insertar el margen se establecen los factores de escala para conversión de altura de texto y líneas, además del área de impresión.

5. Activar triangulación del terreno y seleccionar los puntos dibujados.

6. Seleccionar general curvas de nivel del menú principal, aceptado los valores que aparecen en la caja del dialogo, después seleccionar la triangulación generada.

7. Especificar grado de curvatura en este caso de 10 y en seguida tenemos las curvas de nivel de nuestro levantamiento.

Los puntos registrados por la estación total en el lugar son los valores de la tabla 8:
Tabla 8: Puntos tomados por la estación total, en el levantamiento topográfico.

<table>
<thead>
<tr>
<th>Estación</th>
<th>Este</th>
<th>Norte</th>
<th>Elevación</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-1</td>
<td>512737.000</td>
<td>1454546.000</td>
<td>100.000</td>
</tr>
<tr>
<td>2</td>
<td>512760.315</td>
<td>1454593.258</td>
<td>97.600</td>
</tr>
<tr>
<td>3</td>
<td>512746.463</td>
<td>1454548.250</td>
<td>99.554</td>
</tr>
<tr>
<td>4</td>
<td>512739.618</td>
<td>1454550.387</td>
<td>99.153</td>
</tr>
<tr>
<td>5</td>
<td>512726.293</td>
<td>1454547.335</td>
<td>99.555</td>
</tr>
<tr>
<td>6</td>
<td>512750.523</td>
<td>1454557.172</td>
<td>99.554</td>
</tr>
<tr>
<td>7</td>
<td>512753.830</td>
<td>1454564.678</td>
<td>98.950</td>
</tr>
<tr>
<td>8</td>
<td>512757.213</td>
<td>1454550.765</td>
<td>99.140</td>
</tr>
<tr>
<td>9</td>
<td>512750.653</td>
<td>1454549.124</td>
<td>99.573</td>
</tr>
<tr>
<td>10</td>
<td>512742.285</td>
<td>1454539.028</td>
<td>99.581</td>
</tr>
<tr>
<td>11</td>
<td>512737.999</td>
<td>1454530.289</td>
<td>98.295</td>
</tr>
<tr>
<td>12</td>
<td>512735.641</td>
<td>1454531.495</td>
<td>98.607</td>
</tr>
<tr>
<td>13</td>
<td>512732.994</td>
<td>1454521.270</td>
<td>99.174</td>
</tr>
<tr>
<td>14</td>
<td>512730.226</td>
<td>1454510.933</td>
<td>100.302</td>
</tr>
<tr>
<td>15</td>
<td>512728.799</td>
<td>1454500.910</td>
<td>101.182</td>
</tr>
<tr>
<td>16</td>
<td>512755.297</td>
<td>1454559.131</td>
<td>99.252</td>
</tr>
<tr>
<td>17</td>
<td>512771.699</td>
<td>1454580.301</td>
<td>101.002</td>
</tr>
<tr>
<td>18</td>
<td>512795.960</td>
<td>1454599.165</td>
<td>103.381</td>
</tr>
<tr>
<td>19</td>
<td>512742.369</td>
<td>1454558.157</td>
<td>97.165</td>
</tr>
<tr>
<td>20</td>
<td>512750.867</td>
<td>1454558.338</td>
<td>97.344</td>
</tr>
<tr>
<td>21</td>
<td>512740.333</td>
<td>1454557.872</td>
<td>97.406</td>
</tr>
<tr>
<td>22</td>
<td>512735.765</td>
<td>1454558.497</td>
<td>100.698</td>
</tr>
<tr>
<td>23</td>
<td>512731.996</td>
<td>1454558.882</td>
<td>103.925</td>
</tr>
<tr>
<td>24</td>
<td>512747.597</td>
<td>1454567.925</td>
<td>97.270</td>
</tr>
<tr>
<td>25</td>
<td>512753.727</td>
<td>1454564.748</td>
<td>97.592</td>
</tr>
<tr>
<td>26</td>
<td>512742.084</td>
<td>1454570.745</td>
<td>97.412</td>
</tr>
<tr>
<td>27</td>
<td>512736.750</td>
<td>1454572.041</td>
<td>107.156</td>
</tr>
<tr>
<td>28</td>
<td>512734.143</td>
<td>1454572.319</td>
<td>104.066</td>
</tr>
<tr>
<td>PI-29</td>
<td>512741.823</td>
<td>1454521.325</td>
<td>95.622</td>
</tr>
<tr>
<td>30</td>
<td>512749.962</td>
<td>1454547.629</td>
<td>97.227</td>
</tr>
<tr>
<td>31</td>
<td>512747.536</td>
<td>1454545.880</td>
<td>97.175</td>
</tr>
<tr>
<td>32</td>
<td>512745.062</td>
<td>1454542.706</td>
<td>97.161</td>
</tr>
<tr>
<td>33</td>
<td>512742.876</td>
<td>1454540.131</td>
<td>97.085</td>
</tr>
<tr>
<td>34</td>
<td>512746.505</td>
<td>1454537.972</td>
<td>96.604</td>
</tr>
<tr>
<td>35</td>
<td>512751.618</td>
<td>1454543.093</td>
<td>96.569</td>
</tr>
<tr>
<td>36</td>
<td>512753.910</td>
<td>1454544.945</td>
<td>97.417</td>
</tr>
<tr>
<td>37</td>
<td>512758.695</td>
<td>1454548.334</td>
<td>99.681</td>
</tr>
<tr>
<td>38</td>
<td>512740.418</td>
<td>1454534.303</td>
<td>96.323</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Altura</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>39</td>
<td>512739.036</td>
<td>1454530.006</td>
<td>96.541</td>
</tr>
<tr>
<td>40</td>
<td>512745.310</td>
<td>1454527.991</td>
<td>95.915</td>
</tr>
<tr>
<td>41</td>
<td>512749.200</td>
<td>1454527.631</td>
<td>96.009</td>
</tr>
<tr>
<td>42</td>
<td>512752.878</td>
<td>1454528.193</td>
<td>97.233</td>
</tr>
<tr>
<td>43</td>
<td>512758.388</td>
<td>1454530.277</td>
<td>99.338</td>
</tr>
<tr>
<td>44</td>
<td>512739.907</td>
<td>1454527.499</td>
<td>96.111</td>
</tr>
<tr>
<td>45</td>
<td>512738.196</td>
<td>1454527.392</td>
<td>98.319</td>
</tr>
<tr>
<td>46</td>
<td>512744.852</td>
<td>1454517.951</td>
<td>95.546</td>
</tr>
<tr>
<td>47</td>
<td>512748.733</td>
<td>1454518.540</td>
<td>96.062</td>
</tr>
<tr>
<td>48</td>
<td>512752.348</td>
<td>1454518.642</td>
<td>97.567</td>
</tr>
<tr>
<td>49</td>
<td>512759.842</td>
<td>1454519.063</td>
<td>99.030</td>
</tr>
<tr>
<td>50</td>
<td>512740.018</td>
<td>1454517.529</td>
<td>95.270</td>
</tr>
<tr>
<td>51</td>
<td>512737.953</td>
<td>1454517.473</td>
<td>97.434</td>
</tr>
<tr>
<td>52</td>
<td>512735.257</td>
<td>1454517.581</td>
<td>99.442</td>
</tr>
<tr>
<td>Pl-53</td>
<td>512743.979</td>
<td>1454490.909</td>
<td>95.238</td>
</tr>
<tr>
<td>54</td>
<td>512744.988</td>
<td>1454507.489</td>
<td>94.512</td>
</tr>
<tr>
<td>55</td>
<td>512747.807</td>
<td>1454507.641</td>
<td>95.303</td>
</tr>
<tr>
<td>56</td>
<td>512750.653</td>
<td>1454508.038</td>
<td>96.152</td>
</tr>
<tr>
<td>57</td>
<td>512755.348</td>
<td>1454509.122</td>
<td>98.279</td>
</tr>
<tr>
<td>58</td>
<td>512741.621</td>
<td>1454507.367</td>
<td>95.062</td>
</tr>
<tr>
<td>59</td>
<td>512739.135</td>
<td>1454506.892</td>
<td>96.415</td>
</tr>
<tr>
<td>60</td>
<td>512735.903</td>
<td>1454506.156</td>
<td>100.117</td>
</tr>
<tr>
<td>61</td>
<td>512743.776</td>
<td>1454497.483</td>
<td>94.729</td>
</tr>
<tr>
<td>62</td>
<td>512749.947</td>
<td>1454497.052</td>
<td>95.763</td>
</tr>
<tr>
<td>63</td>
<td>512754.433</td>
<td>1454497.703</td>
<td>97.333</td>
</tr>
<tr>
<td>64</td>
<td>512740.757</td>
<td>1454497.119</td>
<td>95.168</td>
</tr>
<tr>
<td>65</td>
<td>512737.651</td>
<td>1454497.565</td>
<td>98.838</td>
</tr>
<tr>
<td>66</td>
<td>512742.972</td>
<td>1454482.629</td>
<td>95.173</td>
</tr>
<tr>
<td>67</td>
<td>512746.878</td>
<td>1454488.034</td>
<td>95.180</td>
</tr>
<tr>
<td>68</td>
<td>512754.565</td>
<td>1454487.308</td>
<td>96.860</td>
</tr>
<tr>
<td>69</td>
<td>512740.328</td>
<td>1454487.527</td>
<td>95.082</td>
</tr>
<tr>
<td>70</td>
<td>512738.864</td>
<td>1454486.663</td>
<td>97.771</td>
</tr>
<tr>
<td>71</td>
<td>512734.200</td>
<td>1454486.681</td>
<td>100.040</td>
</tr>
<tr>
<td>72</td>
<td>512743.197</td>
<td>1454477.605</td>
<td>95.051</td>
</tr>
<tr>
<td>73</td>
<td>512746.793</td>
<td>1454447.826</td>
<td>95.010</td>
</tr>
<tr>
<td>74</td>
<td>512757.613</td>
<td>1454477.735</td>
<td>96.988</td>
</tr>
<tr>
<td>75</td>
<td>512740.058</td>
<td>1454477.612</td>
<td>95.298</td>
</tr>
<tr>
<td>76</td>
<td>512738.689</td>
<td>1454474.495</td>
<td>97.430</td>
</tr>
<tr>
<td>77</td>
<td>512734.323</td>
<td>1454478.205</td>
<td>99.835</td>
</tr>
<tr>
<td>Pl-78</td>
<td>512747.208</td>
<td>1454454.373</td>
<td>95.193</td>
</tr>
<tr>
<td>79</td>
<td>512743.486</td>
<td>1454467.582</td>
<td>95.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>512750.256</td>
<td>1454468.566</td>
<td>95.667</td>
</tr>
<tr>
<td>81</td>
<td>512761.122</td>
<td>1454469.881</td>
<td>96.829</td>
</tr>
<tr>
<td>82</td>
<td>512739.948</td>
<td>1454467.521</td>
<td>94.969</td>
</tr>
<tr>
<td>83</td>
<td>512738.731</td>
<td>1454466.831</td>
<td>97.492</td>
</tr>
<tr>
<td>84</td>
<td>512732.807</td>
<td>1454466.775</td>
<td>100.229</td>
</tr>
<tr>
<td>85</td>
<td>512744.856</td>
<td>1454457.638</td>
<td>94.575</td>
</tr>
<tr>
<td>86</td>
<td>512751.775</td>
<td>1454458.279</td>
<td>95.128</td>
</tr>
<tr>
<td>87</td>
<td>512759.654</td>
<td>1454458.292</td>
<td>96.373</td>
</tr>
<tr>
<td>88</td>
<td>512740.413</td>
<td>1454457.566</td>
<td>94.835</td>
</tr>
<tr>
<td>89</td>
<td>512738.136</td>
<td>1454457.862</td>
<td>97.315</td>
</tr>
<tr>
<td>90</td>
<td>512732.683</td>
<td>1454457.405</td>
<td>101.174</td>
</tr>
<tr>
<td>91</td>
<td>512747.099</td>
<td>1454447.865</td>
<td>94.394</td>
</tr>
<tr>
<td>92</td>
<td>512752.610</td>
<td>1454448.345</td>
<td>94.994</td>
</tr>
<tr>
<td>93</td>
<td>512759.705</td>
<td>1454448.042</td>
<td>96.075</td>
</tr>
<tr>
<td>94</td>
<td>512741.060</td>
<td>1454447.432</td>
<td>95.474</td>
</tr>
<tr>
<td>95</td>
<td>512737.992</td>
<td>1454447.184</td>
<td>97.524</td>
</tr>
<tr>
<td>96</td>
<td>512731.541</td>
<td>1454447.772</td>
<td>102.871</td>
</tr>
<tr>
<td>Pl-97</td>
<td>512749.790</td>
<td>1454555.636</td>
<td>97.278</td>
</tr>
<tr>
<td>98</td>
<td>512747.375</td>
<td>1454554.070</td>
<td>97.168</td>
</tr>
<tr>
<td>99</td>
<td>512745.028</td>
<td>1454550.989</td>
<td>97.147</td>
</tr>
<tr>
<td>100</td>
<td>512742.723</td>
<td>1454549.245</td>
<td>97.101</td>
</tr>
<tr>
<td>101</td>
<td>512739.687</td>
<td>1454550.324</td>
<td>97.344</td>
</tr>
<tr>
<td>102</td>
<td>512749.939</td>
<td>1454577.690</td>
<td>97.217</td>
</tr>
<tr>
<td>103</td>
<td>512744.236</td>
<td>1454577.896</td>
<td>97.250</td>
</tr>
<tr>
<td>104</td>
<td>512742.327</td>
<td>1454578.328</td>
<td>98.196</td>
</tr>
<tr>
<td>105</td>
<td>512740.400</td>
<td>1454578.753</td>
<td>99.961</td>
</tr>
<tr>
<td>106</td>
<td>512756.400</td>
<td>1454575.767</td>
<td>97.612</td>
</tr>
<tr>
<td>107</td>
<td>512760.961</td>
<td>1454574.940</td>
<td>100.099</td>
</tr>
<tr>
<td>108</td>
<td>512753.786</td>
<td>1454586.916</td>
<td>96.949</td>
</tr>
<tr>
<td>109</td>
<td>512747.587</td>
<td>1454590.055</td>
<td>97.467</td>
</tr>
<tr>
<td>110</td>
<td>512746.022</td>
<td>1454591.126</td>
<td>100.084</td>
</tr>
<tr>
<td>111</td>
<td>512741.802</td>
<td>1454592.860</td>
<td>100.464</td>
</tr>
<tr>
<td>112</td>
<td>512759.843</td>
<td>1454584.694</td>
<td>97.602</td>
</tr>
<tr>
<td>113</td>
<td>512767.304</td>
<td>1454581.115</td>
<td>100.653</td>
</tr>
<tr>
<td>114</td>
<td>512757.557</td>
<td>1454596.180</td>
<td>97.118</td>
</tr>
<tr>
<td>115</td>
<td>512753.039</td>
<td>1454598.785</td>
<td>97.845</td>
</tr>
<tr>
<td>116</td>
<td>512749.763</td>
<td>1454600.304</td>
<td>100.072</td>
</tr>
<tr>
<td>117</td>
<td>512741.901</td>
<td>1454604.695</td>
<td>102.294</td>
</tr>
<tr>
<td>118</td>
<td>512763.907</td>
<td>1454591.845</td>
<td>98.018</td>
</tr>
<tr>
<td>119</td>
<td>512768.295</td>
<td>1454589.588</td>
<td>99.322</td>
</tr>
<tr>
<td>120</td>
<td>512770.647</td>
<td>1454588.479</td>
<td>100.865</td>
</tr>
</tbody>
</table>
5.1.3 SECCIONES Y PERFILES

Las secciones transversales fueron creada en el programa AutoCAD Land desktop versión 2009 a partir de las curvas de nivel. Seguido se obtuvo el perfil teniendo las secciones transversales y los alineamientos definido.
Ilustración 17. Sección transversal de la estación 0+200 aguas arribas.

Ilustración 18. Sección transversal de la estación 0+180 aguas arribas.

Ilustración 19. Sección transversal de la estación 0+160 aguas arribas.

Ilustración 20. Sección transversal de la estación 0+140 aguas arribas.
Ilustración 21. Sección transversal de la estación 0+120 aguas arribas.

Ilustración 22. Sección transversal de la estación 0+080 aguas abajo.

Ilustración 23. Sección transversal de la estación 0+060 aguas abajo.
Ilustración 24. Sección transversal de la estación 0+040 aguas abajo.

Ilustración 25. Sección transversal de la estación 0+020 aguas abajo.

Ilustración 26. Sección transversal de la estación 0+000 aguas abajo.
Perfil del rio

Ilustración 27. Perfil longitudinal del rio.

5.2 Estudios de Suelo

5.2.1 Trabajo de Campo y laboratorios

El estudio de suelo detallado a continuación corresponde a un estudio facilitado por la alcaldía municipal de Santo Tomas del Norte, departamento de Chinandega, el cual fue elaborado por una institución en particular.

Durante el trabajo de campo se realizaron 2 perforaciones, ambas fueron ejecutadas con el método estándar de penetración ASTM D 1586-85. En total se realizaron 21 ft de excavación. (Ver tablas de anexos)

Las profundidades de penetración 1 y 2 fueron de 9 y 12 pies respectivamente. Este estudio geotécnico se realizará con el propósito de determinar los valores de soporte por 1 ft de penetración y determinar los tipos de suelos subyacentes.

Ambas perforaciones fueron realizadas con un equipo de perforación consistente en una máquina de perforación portátil marca BRIGG & STRATTON, provista de un motor de 6HP con sus aditamentos para la exploración de suelos por el método de
percusión. Al efectuar los sondeos se tomó un registro continuo de muestras de suelo. Extrayendo estas con el saca muestras dividido o cuchara normal.

De acuerdo con los resultados de laboratorio y de la propia inspección de campo se comprobó que en forma general, predomina superficialmente suelos gravo arenoso (GC) clasificación SUCS no plástica hasta en profundidad de 0.46 a 0.91 m.

Así mismo se encuentra una capa heterogénea de un suelo areno arcilloso (SM) de espesor variable entre los 0.46m y 2.74m. Finalmente en las perforaciones P1 y P2 se encuentran entre 1.83 m y 2.74 m de profundidad respectivamente un manto de gravo arenoso compacto que es donde se propone asentar las bases del puente en cuestión.

Las muestras extraídas de las perforaciones fueron clasificadas visualmente y al tacto en el sitio, luego fueron trasladadas al laboratorio donde se seleccionaron las típicas a las que se le efectuaron las pruebas necesarias para identificación definitiva de acuerdo al método de clasificación ASTM D 2487.

El personal a cargo de este equipo estuvo conformado por el técnico Laboratorista y jefe de perforación, un operador, un manipulador, un anotador y un ayudante, que en coordinación realizaron las perforaciones y el registro de los golpes en las perforaciones.

5.2.2 Resultados de los ensayos.

Los ensayos de laboratorio se ejecutaron de acuerdo a las siguientes normas mostradas en la tabla.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo de ensaye</th>
<th>Cantidad</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Granulometría</td>
<td>7</td>
<td>ASTM D-422</td>
</tr>
<tr>
<td>2</td>
<td>Humedades</td>
<td>7</td>
<td>ASTM D-2216</td>
</tr>
<tr>
<td>3</td>
<td>Limite liquido</td>
<td>7</td>
<td>ASTM D-423</td>
</tr>
<tr>
<td></td>
<td>Limite plástico e índice de</td>
<td>7</td>
<td>ASTM D-424</td>
</tr>
</tbody>
</table>
Se ensayaron un total de 7 muestras alteradas tomadas durante las perforaciones.

Resistencia a la penetración estándar (SPT)

Penetración Nº 1

Este tipo de suelo resultó ser un suelo gravo arcilloso, el cual presenta una alta resistencia a la penetración desde el inicio, y a medida que se profundiza la tendencia es mayor. Los registros de golpes parten de los 21, esto caracteriza el estrato de muy compacto a duro. Sin embargo se observa un pequeño descenso a los 0.91 metros de profundidad precisamente a inicios del estrato (SM) arena limosa. Sin embargo la característica en forma general es de muy compacta a dura.

A partir de los 1.82 metros de profundidad el tipo de suelo es (GC) gravo arcilloso de alta resistencia a la penetración y de consistencia muy compacta.

Penetración Nº 2

En esta perforación se observó una tendencia de consistencia de compacta en los primeros 0.45 metros de profundidad, compuesto por gravas arcillosas a dura. Sin embargo es importante hacer notar el descenso de la penetración desde los 1.07 metros a los 2.30 metros en un estrato de suelo aren arcilloso (SC) alcanzando apenas los 3 golpes y consistencias de blando. Finalmente a una profundidad entre los 2.90 y 3.66 metros se encuentran altas resistencias alcanzando características de dura con registro de 66 y 73 golpes en un estrato compuesto de gravas arcillosas (GC).

Análisis de las condiciones de cimentación y recomendación

Con los resultados de prueba de penetración estándar (SPT) y aplicando la teoría de Meyerhof (1976) se obtuvo la capacidad de soporte a la profundidad de desplante que se indica en la tabla siguiente.
5.3 Estudios Hidrológicos

5.3.1 Metodología y Caracterización de la Cuenca

5.3.1.1 Delimitación de la cuenca

Se delimitó la cuenca estableciendo como punto de control o de cierre el que correspondía a los sitios de interés de acuerdo al propósito del estudio, o sea la ubicación de las entradas de cada una de las líneas de drenaje de corrientes que aportan caudal.

5.3.1.2 División de la cuenca en sub-cuencas

La cuenca se dividió en nueve sub-cuencas (ver anexos), que de acuerdo a la topografía, ésta drena a través de varias líneas de corrientes cuyas áreas contribuyentes aportan caudal.

5.3.1.3 Cálculo de parámetros utilizados

Los parámetros de la cuenca se obtuvieron a partir del mapa digitalizado haciendo uso del programa AutoCAD:

- Superficie 848.6 Ha.
- Longitud de rio de la cuenca 4.1 km
5.3.1.4 Curvas intensidad duración frecuencia (IDF)

- **Determinación de las intensidades máximas**

De los datos obtenidos de la estación meteorológica más cercana (Chinandega), se tomó como referencia de análisis los años comprendido entre 1971 y 2011, y los diferentes periodos de tiempos de 5, 10, 15, 30, 60 y 120 minutos. Ver anexos.

Una vez obtenidas las curvas intensidad duración frecuencia se procedió al cálculo del caudal por el método racional y por el método de transito de avenida, por este último método se definirá el caudal de diseño para dicho puente.

Los datos obtenidos de las series en años se ordenaron en el orden de mayor a menor como se presenta en la tabla 11, luego se calcula directamente el promedio de las mismas \bar{X} y su desviación estándar S_x.

De los resultados obtenidos de \bar{X} y S_x se determinan los parámetros de α y β de la distribución de Gumbell con:

$$\alpha = \frac{1.281}{S_x}$$ \hspace{1cm} (Ecuación 20)

$$\beta = \bar{X} - 0.4506S_x$$ \hspace{1cm} (Ecuación 21)

Tabla 11. Datos de Intensidades máximas anuales de precipitación en orden decreciente, período 1971 - 2011 para la estación Chinandega.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.6</td>
<td>91.8</td>
<td>80.0</td>
<td>62.4</td>
<td>40.4</td>
<td>16.9</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>120.0</td>
<td>101.4</td>
<td>88.8</td>
<td>63.0</td>
<td>40.7</td>
<td>24.8</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>122.4</td>
<td>104.6</td>
<td>98.0</td>
<td>66.0</td>
<td>42.7</td>
<td>26.1</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>123.6</td>
<td>105.6</td>
<td>100.0</td>
<td>66.2</td>
<td>43.3</td>
<td>26.5</td>
<td>6.7</td>
</tr>
<tr>
<td>5</td>
<td>123.6</td>
<td>112.2</td>
<td>100.8</td>
<td>66.4</td>
<td>44.2</td>
<td>26.8</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>132.0</td>
<td>114.0</td>
<td>103.2</td>
<td>69.4</td>
<td>44.8</td>
<td>29.0</td>
<td>8.1</td>
</tr>
<tr>
<td>7</td>
<td>133.2</td>
<td>115.2</td>
<td>103.6</td>
<td>73.6</td>
<td>45.0</td>
<td>29.7</td>
<td>8.1</td>
</tr>
<tr>
<td>8</td>
<td>142.8</td>
<td>116.4</td>
<td>103.6</td>
<td>73.6</td>
<td>45.0</td>
<td>29.8</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>142.8</td>
<td>119.4</td>
<td>104.0</td>
<td>76.6</td>
<td>48.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>146.4</td>
<td>123.0</td>
<td>104.0</td>
<td>76.8</td>
<td>52.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>152.3</td>
<td>123.0</td>
<td>104.4</td>
<td>78.2</td>
<td>53.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>154.8</td>
<td>129.6</td>
<td>104.4</td>
<td>78.4</td>
<td>53.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>156.0</td>
<td>132.0</td>
<td>108.4</td>
<td>78.6</td>
<td>53.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>157.2</td>
<td>132.0</td>
<td>114.4</td>
<td>79.8</td>
<td>54.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>159.6</td>
<td>133.2</td>
<td>116.4</td>
<td>80.0</td>
<td>54.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>162.0</td>
<td>133.4</td>
<td>116.8</td>
<td>82.6</td>
<td>55.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>164.4</td>
<td>133.8</td>
<td>117.6</td>
<td>82.6</td>
<td>56.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>168.0</td>
<td>133.8</td>
<td>118.4</td>
<td>84.0</td>
<td>57.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>168.0</td>
<td>134.4</td>
<td>118.4</td>
<td>84.6</td>
<td>58.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>168.0</td>
<td>135.0</td>
<td>119.6</td>
<td>84.6</td>
<td>58.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>168</td>
<td>135.6</td>
<td>120.0</td>
<td>84.8</td>
<td>59.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>169.2</td>
<td>138.6</td>
<td>120.0</td>
<td>85.4</td>
<td>63.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>170.4</td>
<td>141</td>
<td>120.0</td>
<td>86.0</td>
<td>65.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>170.4</td>
<td>142.6</td>
<td>120.0</td>
<td>86.8</td>
<td>65.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>172.8</td>
<td>144.0</td>
<td>121.2</td>
<td>90.0</td>
<td>65.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>176.4</td>
<td>147.0</td>
<td>121.2</td>
<td>91.5</td>
<td>68.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>179.9</td>
<td>150.0</td>
<td>122.0</td>
<td>92.8</td>
<td>69.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>182.4</td>
<td>150</td>
<td>123.2</td>
<td>95.8</td>
<td>69.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>189.1</td>
<td>153.0</td>
<td>128.4</td>
<td>98.2</td>
<td>71.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>190.1</td>
<td>156.0</td>
<td>130.5</td>
<td>99.6</td>
<td>71.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>194.4</td>
<td>156.0</td>
<td>132.0</td>
<td>100.0</td>
<td>73.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>199.2</td>
<td>156.8</td>
<td>132.8</td>
<td>100.0</td>
<td>74.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>206.4</td>
<td>158.3</td>
<td>142.4</td>
<td>105.0</td>
<td>75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>207.6</td>
<td>166.2</td>
<td>148.0</td>
<td>107.4</td>
<td>76.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>212.4</td>
<td>174.6</td>
<td>148.8</td>
<td>110.2</td>
<td>78.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>216.0</td>
<td>178.8</td>
<td>154.8</td>
<td>115.0</td>
<td>80.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>232.8</td>
<td>180.0</td>
<td>156.0</td>
<td>120.0</td>
<td>85.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>240.0</td>
<td>181.2</td>
<td>158.8</td>
<td>121.6</td>
<td>87.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>240.0</td>
<td>184.2</td>
<td>160.0</td>
<td>133.0</td>
<td>90.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>242.4</td>
<td>223.2</td>
<td>180.0</td>
<td>140.6</td>
<td>92.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>262.8</td>
<td>230.4</td>
<td>199.2</td>
<td>162.8</td>
<td>158.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la tabla 12 se presentan los datos resultantes del cálculo de los parámetros α y β de la distribución de Gumbell, para una duración de lluvia de 5, 10, 15, 30, 60, 120 y 360 min.
Tabla 12: Datos del cálculo de la media aritmética y desviación estándar.

<table>
<thead>
<tr>
<th>PARAMETROS</th>
<th>DURACIÓN DE INTENSIDADES EN MINUTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>X media</td>
<td>174.01</td>
</tr>
<tr>
<td>Desv. Standard</td>
<td>36.81</td>
</tr>
<tr>
<td>Alfa</td>
<td>0.03</td>
</tr>
<tr>
<td>Beta</td>
<td>157.42</td>
</tr>
</tbody>
</table>

- Ajuste de los datos a la función de distribución de probabilidad de Gumbell.

Los datos obtenidos de \bar{X}, S_x y los parámetros de distribución de valores de Gumbell, α y β se sustituyen en la ecuación:

$$F_y = e^{-e^{\alpha(y-\beta)}}$$ \hspace{1cm} \text{(Ecuación 22)}

Donde se determinaron las probabilidades teóricas (P_i) para las diferentes duraciones de las lluvias y de esta manera encontrar la variación máxima ($\Delta_{\text{máx.}}$), y compararla con la variación crítica ($\Delta_{\text{crít}}$), para un nivel de significancia de $\alpha = 0.05$, el cual corresponde a un nivel de confianza de 0.95.

La distribución empírica se calcula encontrando primeramente el periodo de retorno el cual es:

$$Tr = \frac{n+1}{m}$$ \hspace{1cm} \text{(Ecuación 23)}

Donde
- T_r = Periodo de retorno
- M = número total de muestra
- N = número de orden
El valor de la distribución empírica se obtiene por la siguiente ecuación:

\[
\text{distribución empírica} = \frac{1}{T r}
\]
(Ecuación 24)

Tabla 13: Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 5 minuto, comprendida entre el periodo 1971 – 2011.

<table>
<thead>
<tr>
<th>m</th>
<th>Intensidad (mm/h)</th>
<th>Distribución Empírica P(x)</th>
<th>Distribución Teórica F(x)</th>
<th>Desviación Absoluta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114.6</td>
<td>0.023810</td>
<td>0.01182603</td>
<td>0.011983</td>
</tr>
<tr>
<td>2</td>
<td>120.0</td>
<td>0.047619</td>
<td>0.02529152</td>
<td>0.022328</td>
</tr>
<tr>
<td>3</td>
<td>122.4</td>
<td>0.071429</td>
<td>0.03395711</td>
<td>0.037471</td>
</tr>
<tr>
<td>4</td>
<td>123.6</td>
<td>0.095238</td>
<td>0.03899521</td>
<td>0.056243</td>
</tr>
<tr>
<td>5</td>
<td>123.6</td>
<td>0.119048</td>
<td>0.03899521</td>
<td>0.080052</td>
</tr>
<tr>
<td>6</td>
<td>132.0</td>
<td>0.142857</td>
<td>0.08874099</td>
<td>0.054116</td>
</tr>
<tr>
<td>7</td>
<td>133.2</td>
<td>0.166667</td>
<td>0.09798121</td>
<td>0.068685</td>
</tr>
<tr>
<td>8</td>
<td>142.8</td>
<td>0.190476</td>
<td>0.18951476</td>
<td>0.000961</td>
</tr>
<tr>
<td>9</td>
<td>142.8</td>
<td>0.214286</td>
<td>0.18951476</td>
<td>0.024771</td>
</tr>
<tr>
<td>10</td>
<td>146.4</td>
<td>0.238095</td>
<td>0.23051250</td>
<td>0.007583</td>
</tr>
<tr>
<td>11</td>
<td>152.3</td>
<td>0.261905</td>
<td>0.30267644</td>
<td>0.040772</td>
</tr>
<tr>
<td>12</td>
<td>154.8</td>
<td>0.285714</td>
<td>0.33436574</td>
<td>0.048651</td>
</tr>
<tr>
<td>13</td>
<td>156.0</td>
<td>0.309524</td>
<td>0.34968713</td>
<td>0.040163</td>
</tr>
<tr>
<td>14</td>
<td>157.2</td>
<td>0.333333</td>
<td>0.36504110</td>
<td>0.031708</td>
</tr>
<tr>
<td>15</td>
<td>159.6</td>
<td>0.357143</td>
<td>0.39573779</td>
<td>0.038595</td>
</tr>
<tr>
<td>16</td>
<td>162.0</td>
<td>0.380952</td>
<td>0.42624940</td>
<td>0.045297</td>
</tr>
<tr>
<td>17</td>
<td>164.4</td>
<td>0.404762</td>
<td>0.45638947</td>
<td>0.051628</td>
</tr>
<tr>
<td>18</td>
<td>168.0</td>
<td>0.428571</td>
<td>0.50054829</td>
<td>0.071977</td>
</tr>
<tr>
<td>19</td>
<td>168.0</td>
<td>0.452381</td>
<td>0.50054829</td>
<td>0.048167</td>
</tr>
<tr>
<td>20</td>
<td>168.0</td>
<td>0.476190</td>
<td>0.50054829</td>
<td>0.024358</td>
</tr>
<tr>
<td>21</td>
<td>168</td>
<td>0.500000</td>
<td>0.50054829</td>
<td>0.000548</td>
</tr>
<tr>
<td>22</td>
<td>169.2</td>
<td>0.523810</td>
<td>0.51491758</td>
<td>-0.008892</td>
</tr>
</tbody>
</table>
La realización de los cálculos de las duraciones 10, 15, 30, 60 y 120 minutos se encuentran en la sección de Anexos.

Tabla 14: Delta crítico tomando un valor de N= 31, con un alfa de 0.05.

<table>
<thead>
<tr>
<th>A</th>
<th>N</th>
<th>0.2</th>
<th>0.1</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5</td>
<td>0.45</td>
<td>0.51</td>
<td>0.56</td>
<td>0.67</td>
</tr>
<tr>
<td>10</td>
<td>0.32</td>
<td>0.37</td>
<td>0.41</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.27</td>
<td>0.30</td>
<td>0.34</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.29</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.19</td>
<td>0.22</td>
<td>0.24</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.18</td>
<td>0.20</td>
<td>0.23</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>
Se compara la desviación máxima con el valor crítico de Kolmogorov, para el ajuste analítico a la distribución de Gumbell tipo I, y se obtiene:

Tabla 15: Delta máximo y delta crítico

<table>
<thead>
<tr>
<th>DURACIÓN (MINUTOS)</th>
<th>DESV. MAXIMA (Δ_{max})</th>
<th>CRITICO (Δ_0)</th>
<th>SE ACEPTA (F(x) - P(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.080052</td>
<td>0.232</td>
<td>SI</td>
</tr>
<tr>
<td>10</td>
<td>0.092789</td>
<td>0.232</td>
<td>SI</td>
</tr>
<tr>
<td>15</td>
<td>0.101640</td>
<td>0.232</td>
<td>SI</td>
</tr>
<tr>
<td>30</td>
<td>0.085677</td>
<td>0.232</td>
<td>SI</td>
</tr>
<tr>
<td>60</td>
<td>0.062064</td>
<td>0.232</td>
<td>SI</td>
</tr>
<tr>
<td>120</td>
<td>0.155180</td>
<td>0.232</td>
<td>SI</td>
</tr>
</tbody>
</table>

Se acepta el ajuste por que la desviación máxima es menor a la desviación crítica. Del procedimiento anterior se obtienen las intensidades de lluvias para los diferentes periodos de retorno ya ajustada por el método analítico.

Tabla 16: Intensidades máximas ajustada por el método analítico para los diferentes tipos de periodos de retorno.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>DURACIÓN DE INTENSIDADES EN MINUTOS</th>
<th>Y OBTENIDAS A TRAVES DEL AJUSTE ANALÍTICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5 10 15 30 60 120</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>168.0 138.3 119.5 87.5 61.0 37.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>200.5 164.6 141.0 106.7 79.3 54.0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>249.3 203.9 173.1 135.6 106.8 79.0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>269.6 220.2 186.3 147.5 118.1 89.3</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 17: Calculo de las variables “d” y “A” para un periodo de retorno de 50 años.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(x+d)</td>
<td>log(xtd)²</td>
<td>y</td>
<td>log y</td>
<td>(log y)²</td>
<td>[log(x+d)*log y]</td>
</tr>
<tr>
<td>5</td>
<td>0.9031</td>
<td>0.8156</td>
<td>269.6</td>
<td>2.4306</td>
<td>5.9080</td>
<td>2.1951</td>
</tr>
<tr>
<td>10</td>
<td>1.1139</td>
<td>1.2409</td>
<td>220.2</td>
<td>2.3429</td>
<td>5.4891</td>
<td>2.6098</td>
</tr>
<tr>
<td>15</td>
<td>1.2553</td>
<td>1.5757</td>
<td>186.3</td>
<td>2.2703</td>
<td>5.1544</td>
<td>2.8499</td>
</tr>
<tr>
<td>30</td>
<td>1.5185</td>
<td>2.3059</td>
<td>147.5</td>
<td>2.1688</td>
<td>4.7038</td>
<td>3.2934</td>
</tr>
<tr>
<td>60</td>
<td>1.7993</td>
<td>3.2376</td>
<td>118.1</td>
<td>2.0724</td>
<td>4.2947</td>
<td>3.7289</td>
</tr>
<tr>
<td>120</td>
<td>2.0899</td>
<td>4.3677</td>
<td>89.3</td>
<td>1.9508</td>
<td>3.8058</td>
<td>4.0771</td>
</tr>
<tr>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suma</td>
<td>8.6801</td>
<td>13.5434</td>
<td>13.2359</td>
<td>29.3558</td>
<td>18.7542</td>
<td></td>
</tr>
</tbody>
</table>

Parámetros de ajuste para la ecuación de la forma: \(I = \frac{A}{(t + d)^b} \)

Tabla 18: Parámetros de ajuste para la ecuación de intensidad.

<table>
<thead>
<tr>
<th>T: Años</th>
<th>R</th>
<th>A</th>
<th>d</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.3026</td>
<td>15.6371</td>
<td>16.0</td>
<td>-0.3416</td>
</tr>
<tr>
<td>5</td>
<td>0.9661</td>
<td>1.5123</td>
<td>11.0</td>
<td>-1.1011</td>
</tr>
<tr>
<td>10</td>
<td>0.7288</td>
<td>4.39164145</td>
<td>8.0</td>
<td>-0.8811</td>
</tr>
<tr>
<td>25</td>
<td>0.6852</td>
<td>6.2270</td>
<td>4.0</td>
<td>-0.8448</td>
</tr>
<tr>
<td>50</td>
<td>0.6193</td>
<td>7.18781796</td>
<td>3.0</td>
<td>-0.7355</td>
</tr>
<tr>
<td>100</td>
<td>0.5798</td>
<td>9.39824966</td>
<td>1.0</td>
<td>-0.6902</td>
</tr>
<tr>
<td>1000</td>
<td>0.5443</td>
<td>14.190605</td>
<td>-1.0</td>
<td>-0.6654</td>
</tr>
</tbody>
</table>
5.3.2 Determinación del caudal por el Método Racional

Calculo de la pendiente

\[
s = \frac{H - h}{L} = \frac{300 - 128.4}{4190} = 0.04095 = 4.095\%
\]

Factor de forma de la cuenca

\[
k = 3.28 \frac{L}{\sqrt{S}} = 3.28 \frac{4190 \ m}{\sqrt{0.042}} = 67910.3919
\]

Tiempo de concentración

\[
T_c = 0.0041(k)^{0.77} = 0.0041(67910.3919)^{0.77} = 21.55 \text{ min}
\]
Según las curvas IDF la intensidad es de 172 mm/h

Para el cálculo del coeficiente de escorrentía se utilizó la ecuación:

$$ C = \frac{\sum C_i \cdot A_i}{\sum A_i} $$

(Ecuación 25)

$$ C = \frac{\sum C_i \cdot A_i}{\sum A_i} = \frac{384.119}{848.6} = 0.4527 $$

Para calcular el caudal se obtiene:

$$ Q = \frac{CIA}{360} = \frac{0.4527 \times 172 \times 848.6}{360} = 183.54 \text{ m}^3/\text{S} $$

Tabla 19: Determinación del coeficiente de escorrentía para cada sub-cuenca.

<table>
<thead>
<tr>
<th>SUB CUENCA</th>
<th>ÁREA</th>
<th>C</th>
<th>A*c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>133</td>
<td>0.48</td>
<td>63.84</td>
</tr>
<tr>
<td>A2</td>
<td>194.2</td>
<td>0.48</td>
<td>93.216</td>
</tr>
<tr>
<td>A3</td>
<td>244.1</td>
<td>0.43</td>
<td>104.963</td>
</tr>
<tr>
<td>A4</td>
<td>49.6</td>
<td>0.35</td>
<td>17.36</td>
</tr>
<tr>
<td>A5</td>
<td>30.6</td>
<td>0.45</td>
<td>13.77</td>
</tr>
<tr>
<td>A6</td>
<td>125.1</td>
<td>0.48</td>
<td>60.048</td>
</tr>
<tr>
<td>A7</td>
<td>30.1</td>
<td>0.37</td>
<td>11.137</td>
</tr>
<tr>
<td>A8</td>
<td>31</td>
<td>0.48</td>
<td>14.88</td>
</tr>
<tr>
<td>A9</td>
<td>10.9</td>
<td>0.45</td>
<td>4.905</td>
</tr>
<tr>
<td>Total</td>
<td>848.6</td>
<td></td>
<td>384.119</td>
</tr>
</tbody>
</table>

5.3.3 Determinación del Caudal por el Método de Transito de Avenidas

Para calcular el caudal, se dividió la cuenca en nueve sub-cuencas para poder aplicar el método racional y trasladar el caudal al punto de interés.
Tabla 20: Características de cada una de las sub-cuencas.

<table>
<thead>
<tr>
<th>SUB CUENCA</th>
<th>ÁREA</th>
<th>Hmax</th>
<th>Hmin</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>133</td>
<td>287.91</td>
<td>172.65</td>
<td>1,998</td>
</tr>
<tr>
<td>A2</td>
<td>194.2</td>
<td>300</td>
<td>172.75</td>
<td>2,066</td>
</tr>
<tr>
<td>A3</td>
<td>244.1</td>
<td>260</td>
<td>157.5</td>
<td>2,586</td>
</tr>
<tr>
<td>A4</td>
<td>49.6</td>
<td>172.65</td>
<td>157.5</td>
<td>874</td>
</tr>
<tr>
<td>A5</td>
<td>30.6</td>
<td>157.5</td>
<td>137.27</td>
<td>843</td>
</tr>
<tr>
<td>A6</td>
<td>125.1</td>
<td>280</td>
<td>137.27</td>
<td>1,774</td>
</tr>
<tr>
<td>A7</td>
<td>30.1</td>
<td>240</td>
<td>132.05</td>
<td>1,052</td>
</tr>
<tr>
<td>A8</td>
<td>31</td>
<td>137.27</td>
<td>132.05</td>
<td>245</td>
</tr>
<tr>
<td>A9</td>
<td>10.9</td>
<td>132.05</td>
<td>128.4</td>
<td>161</td>
</tr>
</tbody>
</table>

Calculo de los caudales por el Método Racional para las nueves sub-cuencas.

Tabla 21: Parámetros de cada sub-cuenca por el método racional.

<table>
<thead>
<tr>
<th>SUB CUENCA</th>
<th>ÁREA</th>
<th>Hmax</th>
<th>Hmin</th>
<th>Longitud</th>
<th>Sc</th>
<th>tc</th>
<th>I</th>
<th>C</th>
<th>K</th>
<th>Caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ha</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>min</td>
<td>mm/hora</td>
<td>m3/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>133</td>
<td>287.91</td>
<td>172.65</td>
<td>1,998</td>
<td>0.05769</td>
<td>5.77%</td>
<td>27285.2390</td>
<td>35.4667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>194.2</td>
<td>300</td>
<td>172.75</td>
<td>2,066</td>
<td>0.06159</td>
<td>6.16%</td>
<td>27304.8895</td>
<td>51.7867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>244.1</td>
<td>260</td>
<td>157.5</td>
<td>2,586</td>
<td>0.03964</td>
<td>3.96%</td>
<td>42604.4234</td>
<td>48.9827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>49.6</td>
<td>172.65</td>
<td>157.5</td>
<td>874</td>
<td>0.01733</td>
<td>1.73%</td>
<td>21773.8224</td>
<td>11.0911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>30.6</td>
<td>157.5</td>
<td>137.27</td>
<td>843</td>
<td>0.02400</td>
<td>2.40%</td>
<td>17849.1387</td>
<td>9.1035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>125.1</td>
<td>280</td>
<td>137.27</td>
<td>1,774</td>
<td>0.08046</td>
<td>8.05%</td>
<td>20513.8244</td>
<td>38.0304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>30.1</td>
<td>240</td>
<td>132.05</td>
<td>1,052</td>
<td>0.10261</td>
<td>10.26%</td>
<td>10771.7466</td>
<td>8.0434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>31</td>
<td>137.27</td>
<td>132.05</td>
<td>245</td>
<td>0.02131</td>
<td>2.13%</td>
<td>5505.3853</td>
<td>11.1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>10.9</td>
<td>132.05</td>
<td>128.4</td>
<td>161</td>
<td>0.02267</td>
<td>2.27%</td>
<td>3507.2460</td>
<td>3.6788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>848.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>217.3432</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hidrograma unitarios de las sub-cuencas para el puente Paso Hondo, Santo Tomas del Norte.

Ilustración 29: Hidrograma sintético de la sub-cuenca 1

Ilustración 30: Hidrograma sintético de la sub-cuenca 2.
Ilustración 31: Hidrograma sintético de la sub-cuenca 3.

Ilustración 32: Hidrograma sintético de la sub-cuenca 4.
Ilustración 33: Hidrograma sintético de la sub-cuenca 5.

Ilustración 34: Hidrograma sintético de la sub-cuenca 6.
Ilustración 35: Hidrograma sintético de la sub-cuenca 7.

Ilustración 36: Hidrograma sintético de la sub-cuenca 8.
Ilustración 37: Hidrograma sintético de la sub-cuenca 9.

- **Cálculo de los parámetros del tránsito**

 - Velocidad del tránsito (Vt)
 \[V = \frac{L}{t_c} \]
 (Ecuación 26)

 - Longitud de tránsito (Lt)
 Distancia entre el punto de control 1 al punto de control 2 sobre el cauce principal de la cuenca.

 - Tiempo de retardo (K)
 \[K = \frac{Lt}{Vt} \]
 (Ecuación 27)

 - Tiempo de concentración hidrograma a transitar (t)
 \[T_c = \frac{\Delta t}{2} \]
 (Ecuación 28)
Tabla 22: Cálculo de los parámetros de tránsito (tránsito de 1,2 al 4).

<table>
<thead>
<tr>
<th>SUB CUENCA</th>
<th>V cuenca (m/min)</th>
<th>V transito (m/min)</th>
<th>L transito (m)</th>
<th>K</th>
<th>t (min)</th>
<th>tp (min)</th>
<th>X</th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>SUMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Parámetro de transito del punto de control 1 al punto de control 4

| A1 | 187.1312 | 187.1312 | 874 | 4.6705 | 10.677 | 5.3385 | 0.2 | 0.2709 | 0.5625 | 0.1666 | 1.0000 |

Parámetro de transito del punto de control 2 al punto de control 4

| A2 | 193.3932 | 193.3932 | 874 | 4.5193 | 10.6829 | 5.3414 | 0.2 | 0.2811 | 0.5686 | 0.1503 | 1.0000 |

Tabla 23: Hidrograma transitado de 1 al 4.

| K= | 4.6705 | | t= | 5.3385 | | C0= | 0.2709 | | C1= | 0.5625 | | C2= | 0.1666 |
|----|-------|----|----|-------|----|-----|-----|----|-----|-----|-------|
| t | antes del trans | momento del trans | C0*I2 | C1*I1 | C2*O1 | I1 | O1 | I2 | O2 |
| 0 | 0.0000 | 0.0000 | 0 | 0 | 0 | 0.0000 | 0 |
| 5.3385 | 4.8040 | 0.0000 | | 0 | 0.0000 | 0.0000 | 17.7334 | 4.8040 |
| 10.677 | 9.6079 | 9.9750 | 0.800340488 | | 17.7334 | 4.8040 | 35.4667 | 20.3833 |
| 21.354 | 0.0000 | 9.9750 | 4.689762932 | 17.7334 | | 28.1498 | 0.0000 | 14.6648 |
| 26.6925 | 0.0000 | 0.0000 | 2.443151066 | 0.0000 | 14.6648 | 0 | 2.4432 |
| 32.031 | 0.0000 | 0.0000 | 0.407028968 | 0 | 2.4432 | 0 | 0.4070 |
| 37.3695 | 0.0000 | 0.0000 | 0.067811026 | 0 | 0.4070 | 0 | 0.0678 |
| 42.708 | 0.0000 | 0.0000 | 0.011297317 | 0 | 0.0678 | 0 | 0.0113 |
| 48.0465 | 0.0000 | 0.0000 | 0.001882133 | 0 | 0.0113 | 0 | 0.0019 |
| | | | 0.0019 | | | | | | | |
Ilustración 38: Hidrograma transitado de 1 al 4.

Tabla 24: Hidrograma transitado de 2 al 4.

<table>
<thead>
<tr>
<th>K</th>
<th>4.5193</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0=0</td>
<td>0.2811</td>
</tr>
<tr>
<td>t=5.3414</td>
<td>C1=0.5686</td>
</tr>
<tr>
<td></td>
<td>C2=0.1503</td>
</tr>
<tr>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C0*I2</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.3414</td>
<td>7.2786</td>
</tr>
<tr>
<td>16.0242</td>
<td>7.2786</td>
</tr>
<tr>
<td>21.3656</td>
<td>0.0000</td>
</tr>
<tr>
<td>26.707</td>
<td>0.0000</td>
</tr>
<tr>
<td>32.0484</td>
<td>0.0000</td>
</tr>
<tr>
<td>37.3898</td>
<td>0.0000</td>
</tr>
<tr>
<td>42.7312</td>
<td>0.0000</td>
</tr>
<tr>
<td>48.0726</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Ingeniería Civil

<table>
<thead>
<tr>
<th>t (min)</th>
<th>Hidrograma transitado 1-4 (m3/s)</th>
<th>Hidrograma transitado de 2-4 (m3/s)</th>
<th>Hidrograma 4 (m3/s)</th>
<th>Suma (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000</td>
</tr>
<tr>
<td>4.4871</td>
<td>4.0378</td>
<td>6.1145</td>
<td>5.5456</td>
<td>15.69791</td>
</tr>
<tr>
<td>5.3385</td>
<td>4.804</td>
<td>7.2746</td>
<td>6.5978</td>
<td>18.67647</td>
</tr>
<tr>
<td>5.3414</td>
<td>4.8125</td>
<td>7.2786</td>
<td>6.6014</td>
<td>18.69247</td>
</tr>
<tr>
<td>8.9742</td>
<td>15.4140</td>
<td>22.9863</td>
<td>11.0911</td>
<td>49.49147</td>
</tr>
<tr>
<td>10.677</td>
<td>20.3833</td>
<td>30.3490</td>
<td>8.9867</td>
<td>59.71897</td>
</tr>
<tr>
<td>10.6828</td>
<td>20.3917</td>
<td>30.3741</td>
<td>8.9795</td>
<td>59.74532</td>
</tr>
<tr>
<td>13.4613</td>
<td>24.4330</td>
<td>36.0523</td>
<td>5.5456</td>
<td>66.03083</td>
</tr>
<tr>
<td>16.0155</td>
<td>28.14798</td>
<td>41.2720</td>
<td>2.3889</td>
<td>71.80887</td>
</tr>
<tr>
<td>16.0242</td>
<td>28.1260</td>
<td>41.2898</td>
<td>2.3781</td>
<td>71.79392</td>
</tr>
<tr>
<td>17.9484</td>
<td>23.2662</td>
<td>33.9447</td>
<td>0</td>
<td>57.21083</td>
</tr>
<tr>
<td>21.354</td>
<td>14.6648</td>
<td>20.9447</td>
<td>0</td>
<td>35.60950</td>
</tr>
<tr>
<td>21.3656</td>
<td>14.6382</td>
<td>20.9288</td>
<td>0</td>
<td>35.56704</td>
</tr>
<tr>
<td>26.6925</td>
<td>2.4432</td>
<td>3.1939</td>
<td>0</td>
<td>5.63708</td>
</tr>
<tr>
<td>26.707</td>
<td>2.4377</td>
<td>3.1456</td>
<td>0</td>
<td>5.58327</td>
</tr>
<tr>
<td>32.031</td>
<td>0.407</td>
<td>0.4815</td>
<td>0</td>
<td>0.88851</td>
</tr>
</tbody>
</table>
Ilustración 40: Hidrograma suma en 4.

<table>
<thead>
<tr>
<th>Tiempo (s)</th>
<th>Caudal (m³/s)</th>
<th>Hidrograma suma en punto 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.0484</td>
<td>0.4059</td>
<td>0.4728</td>
</tr>
<tr>
<td>37.3695</td>
<td>0.0678</td>
<td>0.0726</td>
</tr>
<tr>
<td>37.3898</td>
<td>0.0675</td>
<td>0.0711</td>
</tr>
<tr>
<td>42.708</td>
<td>0.0019</td>
<td>0.0110</td>
</tr>
<tr>
<td>42.7312</td>
<td>0.0019</td>
<td>0.0107</td>
</tr>
</tbody>
</table>

Ilustración mostrando la evolución del caudal en el hidrograma.
Tabla 26: Cálculo de los parámetros de tránsito (tránsito de 3,4 al 5).

<table>
<thead>
<tr>
<th>SUBCUENCA</th>
<th>Vcuenca</th>
<th>Vtransito</th>
<th>Ltransito</th>
<th>K</th>
<th>t</th>
<th>tp</th>
<th>X</th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>SUMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/min</td>
<td>m/min</td>
<td>m</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>A3</td>
<td>171.8569</td>
<td>171.8569</td>
<td>843</td>
<td>4.9052</td>
<td>15.0474</td>
<td>7.5237</td>
<td>0.2</td>
<td>0.3618</td>
<td>0.6171</td>
<td>0.0211</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Parámetro de tránsito del punto de control 1 al punto de control 4

v(1-4)	187.1312										
V(2-4)	193.3932										
A4	97.3903	159.3049	843	5.2917	8.9742	4.4871	0.2	0.1830	0.5098	0.3072	1.0000

Tabla 27: Hidrograma transitado de 3 al 5

<table>
<thead>
<tr>
<th>Hidrograma</th>
<th>transitado del 3 al 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K=</td>
<td>4.9052</td>
</tr>
<tr>
<td>C0=</td>
<td>0.3618</td>
</tr>
<tr>
<td>t=</td>
<td>7.5237</td>
</tr>
<tr>
<td>t antes del trans</td>
<td>C0*I2</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>7.5237</td>
<td>8.8610</td>
</tr>
<tr>
<td>15.0474</td>
<td>17.7129</td>
</tr>
<tr>
<td>22.5711</td>
<td>8.8610</td>
</tr>
<tr>
<td>30.0948</td>
<td>0.0000</td>
</tr>
<tr>
<td>37.6185</td>
<td>0.0000</td>
</tr>
<tr>
<td>45.1422</td>
<td>0.0000</td>
</tr>
<tr>
<td>52.6659</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Ilustración 41: Hidrograma transitado de 3 al 5.

Tabla 28: Hidrograma transitado de 4 al 5.

<table>
<thead>
<tr>
<th>Hidrograma transitado del 4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K= 5.2917</td>
</tr>
<tr>
<td>t= 4.4871</td>
</tr>
<tr>
<td>C0= 0.183</td>
</tr>
<tr>
<td>C1= 0.5098</td>
</tr>
<tr>
<td>C2= 0.3072</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caudal tras el transc.</th>
<th>Caudal del transc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.863</td>
<td>39.785</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C0*I2</th>
<th>C1*I1</th>
<th>C2*I0</th>
<th>I1</th>
<th>I0</th>
<th>I2</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.8727</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>15.6979</td>
<td>2.8727</td>
</tr>
<tr>
<td>9.0569</td>
<td>8.0028</td>
<td>0.8825</td>
<td>15.6979</td>
<td>2.8727</td>
<td>49.4915</td>
<td>17.9422</td>
</tr>
<tr>
<td>12.0836</td>
<td>25.2308</td>
<td>5.5119</td>
<td>49.4915</td>
<td>17.9422</td>
<td>66.0308</td>
<td>42.8263</td>
</tr>
<tr>
<td>10.4696</td>
<td>33.6625</td>
<td>13.1562</td>
<td>66.0308</td>
<td>42.8263</td>
<td>57.2108</td>
<td>57.2883</td>
</tr>
<tr>
<td>5.4034</td>
<td>29.1661</td>
<td>17.5990</td>
<td>57.2108</td>
<td>57.2883</td>
<td>29.5266</td>
<td>52.1684</td>
</tr>
<tr>
<td>0.9869</td>
<td>15.0527</td>
<td>16.0261</td>
<td>29.5266</td>
<td>52.1684</td>
<td>5.3931</td>
<td>32.0657</td>
</tr>
<tr>
<td>0.3544</td>
<td>2.7494</td>
<td>9.8506</td>
<td>5.3931</td>
<td>32.0657</td>
<td>1.9364</td>
<td>12.9544</td>
</tr>
<tr>
<td>0.0631</td>
<td>0.9872</td>
<td>3.9796</td>
<td>1.9364</td>
<td>12.9544</td>
<td>0.3447</td>
<td>5.0298</td>
</tr>
<tr>
<td>0.0124</td>
<td>0.1757</td>
<td>1.5452</td>
<td>0.3447</td>
<td>5.0298</td>
<td>0.0679</td>
<td>1.7333</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0346</td>
<td>0.5325</td>
<td>0.0679</td>
<td>1.7333</td>
<td>0.0000</td>
<td>0.5671</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1742</td>
<td>0.0000</td>
<td>0.5671</td>
<td>0.0000</td>
<td>0.1742</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0535</td>
<td>0.0000</td>
<td>0.1742</td>
<td>0.0000</td>
<td>0.0535</td>
</tr>
</tbody>
</table>
Ilustración 42: Hidrograma transitado de 4 al 5.

Tabla 29: Hidrograma suma en 5.

<table>
<thead>
<tr>
<th>t</th>
<th>Hidrograma transitado 3-5 (m³/s)</th>
<th>Hidrograma transitado de 4-5 (m³/s)</th>
<th>Hidrograma 5 (m³/s)</th>
<th>Suma (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3.8503</td>
<td>4.5347</td>
<td>2.4650</td>
<td>4.5518</td>
<td>11.5515</td>
</tr>
<tr>
<td>4.4871</td>
<td>5.2847</td>
<td>2.8727</td>
<td>5.3046</td>
<td>13.4620</td>
</tr>
<tr>
<td>7.5237</td>
<td>8.8610</td>
<td>13.0708</td>
<td>7.9515</td>
<td>29.8834</td>
</tr>
<tr>
<td>8.9742</td>
<td>13.5191</td>
<td>17.9422</td>
<td>7.5979</td>
<td>39.0592</td>
</tr>
<tr>
<td>11.5509</td>
<td>21.7939</td>
<td>32.2318</td>
<td>4.5518</td>
<td>58.5775</td>
</tr>
<tr>
<td>13.4613</td>
<td>27.9290</td>
<td>42.8263</td>
<td>2.2933</td>
<td>73.0486</td>
</tr>
<tr>
<td>15.0474</td>
<td>33.0226</td>
<td>47.9383</td>
<td>0.4183</td>
<td>81.3792</td>
</tr>
<tr>
<td>15.4012</td>
<td>33.3406</td>
<td>49.0786</td>
<td>0.0000</td>
<td>82.4192</td>
</tr>
<tr>
<td>17.9484</td>
<td>35.6301</td>
<td>57.2883</td>
<td>0.0000</td>
<td>92.9184</td>
</tr>
<tr>
<td>22.4355</td>
<td>39.6631</td>
<td>52.1684</td>
<td>0.0000</td>
<td>91.8315</td>
</tr>
<tr>
<td>22.5711</td>
<td>39.7850</td>
<td>51.5609</td>
<td>0.0000</td>
<td>91.3459</td>
</tr>
<tr>
<td>26.9226</td>
<td>26.0013</td>
<td>32.0657</td>
<td>0.0000</td>
<td>58.0670</td>
</tr>
<tr>
<td>30.0948</td>
<td>15.9531</td>
<td>18.5548</td>
<td>0.0000</td>
<td>34.5079</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>31.4097</td>
<td>13.2238</td>
<td>12.9544</td>
<td>0.0000</td>
<td>26.1782</td>
</tr>
<tr>
<td>35.8968</td>
<td>3.9102</td>
<td>5.0298</td>
<td>0.0000</td>
<td>8.9400</td>
</tr>
<tr>
<td>37.6185</td>
<td>0.3366</td>
<td>3.7649</td>
<td>0.0000</td>
<td>4.1015</td>
</tr>
<tr>
<td>40.3839</td>
<td>0.2155</td>
<td>1.7333</td>
<td>0.0000</td>
<td>1.9488</td>
</tr>
<tr>
<td>44.8710</td>
<td>0.0190</td>
<td>0.5671</td>
<td>0.0000</td>
<td>0.5861</td>
</tr>
<tr>
<td>45.1422</td>
<td>0.0071</td>
<td>0.5328</td>
<td>0.0000</td>
<td>0.5399</td>
</tr>
<tr>
<td>49.3581</td>
<td>0.0078</td>
<td>0.0003</td>
<td>0.0000</td>
<td>0.0081</td>
</tr>
</tbody>
</table>

Ilustración 43: Hidrograma suma en 5.
Tabla 30: Cálculo de los parámetros de tránsito (tránsito de 5, 6 al 8).

<table>
<thead>
<tr>
<th>SUBCUENCA</th>
<th>Vcuenca</th>
<th>Vtransito</th>
<th>Ltransito</th>
<th>K</th>
<th>t</th>
<th>tp</th>
<th>X</th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>SUMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/min</td>
<td>m/min</td>
<td>m</td>
<td>min</td>
<td>min</td>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Parámetro de tránsito del punto de control 1 al punto de control 4

| A5 | 109.4706 | 56.023 | 245 | 4.3732 | 7.7007 | 0.2 | 0.1937 | 0.5162 | 0.2901 | 1.0000 |

Parámetro de tránsito del punto de control 2 al punto de control 4

| V(4-5) | 159.3049 |

| A6 | 206.9625 | 183.1337 | 245 | 1.3378 | 8.5716 | 4.2858 | 0.2 | 0.5836 | 0.7502 | 0.3338 | 1.0000 |

Tabla 31: Hidrograma transitado de 5 al 8.

<table>
<thead>
<tr>
<th>K=</th>
<th>4.3732</th>
<th>t=</th>
<th>3.8504</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0=</td>
<td>0.1937</td>
<td>C1=</td>
<td>0.5162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>antes del trans</th>
<th>momento del trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>C0*I2</td>
<td>C1*I1</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.8504</td>
<td>2.2375</td>
<td>0.0000</td>
</tr>
<tr>
<td>7.7007</td>
<td>6.2367</td>
<td>5.9629</td>
</tr>
<tr>
<td>15.4014</td>
<td>15.9646</td>
<td>30.2377</td>
</tr>
<tr>
<td>19.2518</td>
<td>17.9098</td>
<td>42.5448</td>
</tr>
<tr>
<td>23.1021</td>
<td>16.9071</td>
<td>47.7287</td>
</tr>
<tr>
<td>26.9525</td>
<td>11.2046</td>
<td>45.0565</td>
</tr>
<tr>
<td>30.8028</td>
<td>5.8154</td>
<td>29.8595</td>
</tr>
<tr>
<td>34.6532</td>
<td>2.6571</td>
<td>15.4978</td>
</tr>
<tr>
<td>38.5035</td>
<td>0.6610</td>
<td>7.0810</td>
</tr>
<tr>
<td>42.3539</td>
<td>0.2616</td>
<td>1.7616</td>
</tr>
<tr>
<td>46.2042</td>
<td>0.0786</td>
<td>0.6971</td>
</tr>
<tr>
<td>50.0546</td>
<td>0.0000</td>
<td>0.6971</td>
</tr>
<tr>
<td>53.9049</td>
<td>0.0000</td>
<td>0.6971</td>
</tr>
</tbody>
</table>

1.2328

Tabla 32: Hidrograma transitado de 6 al 8.

<table>
<thead>
<tr>
<th>Hidrograma transitado del 6 al 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>K= 1.3378</td>
</tr>
<tr>
<td>C0= 0.5835</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>min</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>4.2858</td>
</tr>
<tr>
<td>17.1432</td>
</tr>
<tr>
<td>21.4290</td>
</tr>
<tr>
<td>25.7148</td>
</tr>
<tr>
<td>30.0006</td>
</tr>
<tr>
<td>34.2864</td>
</tr>
<tr>
<td>38.5722</td>
</tr>
<tr>
<td>42.858</td>
</tr>
<tr>
<td>47.1438</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Ilustración 45: Hidrograma transitado de 6 al 8.

Tabla 33: Hidrograma suma en 8.

<table>
<thead>
<tr>
<th>t (min)</th>
<th>Hidrograma transitado 5-8 (m³/s)</th>
<th>Hidrograma transitado de6-8 (m³/s)</th>
<th>Hidrograma 8 (m³/s)</th>
<th>Suma (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5</td>
<td>1.4528</td>
<td>6.4722</td>
<td>5.5800</td>
<td>13.5050</td>
</tr>
<tr>
<td>3.8504</td>
<td>2.2375</td>
<td>9.9681</td>
<td>8.5940</td>
<td>20.7996</td>
</tr>
<tr>
<td>5</td>
<td>5.4058</td>
<td>14.0279</td>
<td>11.1600</td>
<td>30.5937</td>
</tr>
<tr>
<td>7.5</td>
<td>12.2955</td>
<td>24.2931</td>
<td>5.5800</td>
<td>42.1686</td>
</tr>
<tr>
<td>7.7007</td>
<td>12.8486</td>
<td>25.1171</td>
<td>5.1320</td>
<td>43.0978</td>
</tr>
<tr>
<td>8.5716</td>
<td>17.1112</td>
<td>28.6931</td>
<td>3.1882</td>
<td>48.9925</td>
</tr>
<tr>
<td>10</td>
<td>24.1026</td>
<td>28.6931</td>
<td>0.0000</td>
<td>52.7957</td>
</tr>
<tr>
<td>11.5511</td>
<td>31.6942</td>
<td>28.6931</td>
<td>0.0000</td>
<td>60.3873</td>
</tr>
<tr>
<td>12.8574</td>
<td>39.7360</td>
<td>28.6931</td>
<td>0.0000</td>
<td>68.4291</td>
</tr>
<tr>
<td>15.4014</td>
<td>55.3968</td>
<td>14.4433</td>
<td>0.0000</td>
<td>69.8401</td>
</tr>
<tr>
<td>17.1432</td>
<td>64.9547</td>
<td>4.6869</td>
<td>0.0000</td>
<td>69.6416</td>
</tr>
<tr>
<td>19.2518</td>
<td>76.5252</td>
<td>1.6112</td>
<td>0.0000</td>
<td>78.1364</td>
</tr>
</tbody>
</table>
Ilustración 46: Hidrograma suma en el punto 8.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Caudal (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>100.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>90.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>80.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>70.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>60.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>50.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>40.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>30.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>20.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>10.0000</td>
</tr>
<tr>
<td>86.0857</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Tabla 34: Calculo de los parámetros de tránsito (tránsito de 7, 8 al 9).

<table>
<thead>
<tr>
<th>SUB Cuenca</th>
<th>Vcuenca</th>
<th>Vtransito</th>
<th>Ltransito</th>
<th>K</th>
<th>t</th>
<th>tp</th>
<th>X</th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>SUMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Parámetro de transito del punto de control 1 al punto de control 4

| A7 | 56.0230 | 56.023 | 161 | 2.8738 | 5.2197 | 2.6099 | 0.2 | 0.2026 | 0.5216 | 0.2758 | 1.0000 |

Parámetro de transito del punto de control 2 al punto de control 4

<table>
<thead>
<tr>
<th>V(5-6)</th>
<th>93.9438</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>49.0000</td>
</tr>
</tbody>
</table>

Tabla 35: Hidrograma transitado de 7 al 9.

<table>
<thead>
<tr>
<th>K=</th>
<th>2.8738</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0=</td>
<td>0.2026</td>
</tr>
<tr>
<td>C1=</td>
<td>0.5216</td>
</tr>
<tr>
<td>C2=</td>
<td>0.2758</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>antes del trans</th>
<th>momento del trans</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Min</th>
<th>C0*I2</th>
<th>C1*I1</th>
<th>C2*O1</th>
<th>I1</th>
<th>O1</th>
<th>I2</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.8738</td>
<td>0.8148</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0</td>
<td>4.0217</td>
<td>0.8148</td>
</tr>
<tr>
<td>5.7476</td>
<td>1.6296</td>
<td>2.0977</td>
<td>0.2247</td>
<td>4.0217</td>
<td>0.8148</td>
<td>8.0434</td>
<td>3.9520</td>
</tr>
<tr>
<td>8.6214</td>
<td>0.8148</td>
<td>4.1954</td>
<td>1.0900</td>
<td>8.0434</td>
<td>3.9520</td>
<td>4.0217</td>
<td>6.1002</td>
</tr>
<tr>
<td>11.4952</td>
<td>0.0000</td>
<td>2.0977</td>
<td>1.6824</td>
<td>4.0217</td>
<td>6.1002</td>
<td>0</td>
<td>3.7802</td>
</tr>
<tr>
<td>14.3690</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0426</td>
<td>0</td>
<td>3.7802</td>
<td>0.0000</td>
<td>1.0426</td>
</tr>
<tr>
<td>17.2428</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.2875</td>
<td>0.0000</td>
<td>1.0426</td>
<td>0.0000</td>
<td>0.2875</td>
</tr>
<tr>
<td>20.1166</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0793</td>
<td>0.0000</td>
<td>0.2875</td>
<td>0.0000</td>
<td>0.0793</td>
</tr>
<tr>
<td>22.9904</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0219</td>
<td>0.0000</td>
<td>0.0793</td>
<td>0.0000</td>
<td>0.0219</td>
</tr>
<tr>
<td>25.8642</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.060</td>
<td>0.0000</td>
<td>0.0219</td>
<td>0.0000</td>
<td>0.060</td>
</tr>
<tr>
<td>28.738</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0017</td>
<td>0.0000</td>
<td>0.060</td>
<td>0.0000</td>
<td>0.0017</td>
</tr>
<tr>
<td>0.0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ilustración 47: Hidrograma transitado de 7 al 9.

Tabla 36: Hidrograma transitado de 8 al 9.

<table>
<thead>
<tr>
<th>Hidrograma transitado del 8 al 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K=</td>
</tr>
<tr>
<td>t=</td>
</tr>
<tr>
<td>C0=</td>
</tr>
<tr>
<td>C1=</td>
</tr>
<tr>
<td>C2=</td>
</tr>
<tr>
<td>t antes del trans</td>
</tr>
<tr>
<td>C0*I2</td>
</tr>
<tr>
<td>C1*I1</td>
</tr>
<tr>
<td>C2*O1</td>
</tr>
<tr>
<td>I1</td>
</tr>
<tr>
<td>O1</td>
</tr>
<tr>
<td>I2</td>
</tr>
<tr>
<td>O2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tiempo(min)</th>
<th>Caudal(m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>2.5000</td>
</tr>
<tr>
<td>7.5000</td>
<td>8.0125</td>
</tr>
<tr>
<td>10</td>
<td>11.0440</td>
</tr>
<tr>
<td>12.5000</td>
<td>13.505</td>
</tr>
<tr>
<td>15</td>
<td>17.3453</td>
</tr>
<tr>
<td>17.5000</td>
<td>20.7028</td>
</tr>
<tr>
<td>20</td>
<td>22.0910</td>
</tr>
<tr>
<td>22.5000</td>
<td>22.0495</td>
</tr>
<tr>
<td>25</td>
<td>19.3003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tiempo(min)</th>
<th>Caudal(m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5000</td>
<td>3.5370</td>
</tr>
<tr>
<td>5</td>
<td>7.5250</td>
</tr>
<tr>
<td>7.5000</td>
<td>11.0440</td>
</tr>
<tr>
<td>10</td>
<td>13.8272</td>
</tr>
<tr>
<td>12.5000</td>
<td>17.3453</td>
</tr>
<tr>
<td>15</td>
<td>18.2330</td>
</tr>
<tr>
<td>17.5000</td>
<td>16.504</td>
</tr>
<tr>
<td>20</td>
<td>20.7028</td>
</tr>
<tr>
<td>22.5000</td>
<td>22.0495</td>
</tr>
<tr>
<td>25</td>
<td>19.3003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tiempo(min)</th>
<th>Caudal(m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6.1002</td>
</tr>
<tr>
<td>10</td>
<td>0.8148</td>
</tr>
<tr>
<td>15</td>
<td>0.0017</td>
</tr>
</tbody>
</table>

Ilustración 47: Hidrograma transitado de 7 al 9.

Tabla 36: Hidrograma transitado de 8 al 9.
Ilustración 48: Hidrograma transitado de 8 al 9.

<table>
<thead>
<tr>
<th>t</th>
<th>Hidrograma transitado 7-9 (m³/s)</th>
<th>Hidrograma transitado de 8-9 (m³/s)</th>
<th>Hidrograma 9 (m³/s)</th>
<th>Suma (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5</td>
<td>0.7088</td>
<td>4.8555</td>
<td>1.1394</td>
<td>6.0852</td>
</tr>
<tr>
<td>2.8738</td>
<td>0.8148</td>
<td>5.4270</td>
<td>2.1144</td>
<td>8.3562</td>
</tr>
<tr>
<td>5</td>
<td>3.1359</td>
<td>16.1773</td>
<td>3.6788</td>
<td>22.9920</td>
</tr>
<tr>
<td>5.7476</td>
<td>3.9520</td>
<td>20.6150</td>
<td>3.1278</td>
<td>27.6958</td>
</tr>
<tr>
<td>7.5</td>
<td>5.2619</td>
<td>31.0172</td>
<td>1.8394</td>
<td>38.1185</td>
</tr>
<tr>
<td>8.6214</td>
<td>6.1002</td>
<td>36.3608</td>
<td>1.0143</td>
<td>43.4753</td>
</tr>
<tr>
<td>10</td>
<td>4.9873</td>
<td>42.9300</td>
<td>0.0000</td>
<td>47.9173</td>
</tr>
<tr>
<td>11.4952</td>
<td>3.7802</td>
<td>49.8677</td>
<td>0.0000</td>
<td>53.6479</td>
</tr>
<tr>
<td>12.5</td>
<td>2.8230</td>
<td>54.5300</td>
<td>0.0000</td>
<td>57.3530</td>
</tr>
<tr>
<td>14.3690</td>
<td>1.0426</td>
<td>62.3575</td>
<td>0.0000</td>
<td>63.4001</td>
</tr>
<tr>
<td>15</td>
<td>0.8768</td>
<td>65.0002</td>
<td>0.0000</td>
<td>65.8770</td>
</tr>
<tr>
<td>17.2428</td>
<td>0.2875</td>
<td>66.8437</td>
<td>0.0000</td>
<td>67.1312</td>
</tr>
<tr>
<td>17.5</td>
<td>0.2689</td>
<td>67.0551</td>
<td>0.0000</td>
<td>67.3240</td>
</tr>
<tr>
<td>20</td>
<td>0.0877</td>
<td>67.9488</td>
<td>0.0000</td>
<td>68.0365</td>
</tr>
<tr>
<td>20.1166</td>
<td>0.0793</td>
<td>68.4357</td>
<td>0.0000</td>
<td>68.5150</td>
</tr>
<tr>
<td>22.5</td>
<td>0.0317</td>
<td>78.3873</td>
<td>0.0000</td>
<td>78.4190</td>
</tr>
<tr>
<td>22.9904</td>
<td>0.0219</td>
<td>79.3278</td>
<td>0.0000</td>
<td>79.3497</td>
</tr>
<tr>
<td>25</td>
<td>0.0108</td>
<td>83.1821</td>
<td>0.0000</td>
<td>83.1929</td>
</tr>
<tr>
<td>25.8642</td>
<td>0.0060</td>
<td>82.5478</td>
<td>0.0000</td>
<td>82.5538</td>
</tr>
<tr>
<td>27.5</td>
<td>0.0036</td>
<td>81.3471</td>
<td>0.0000</td>
<td>81.3507</td>
</tr>
<tr>
<td>28.738</td>
<td>0.0017</td>
<td>76.9417</td>
<td>0.0000</td>
<td>76.9434</td>
</tr>
<tr>
<td>30</td>
<td>0.0000</td>
<td>72.4509</td>
<td>0.0000</td>
<td>72.4509</td>
</tr>
<tr>
<td>32.5</td>
<td>0.0000</td>
<td>61.6067</td>
<td>0.0000</td>
<td>61.6067</td>
</tr>
<tr>
<td>35</td>
<td>0.0000</td>
<td>48.4407</td>
<td>0.0000</td>
<td>48.4407</td>
</tr>
<tr>
<td>37.5</td>
<td>0.0000</td>
<td>35.6649</td>
<td>0.0000</td>
<td>35.6649</td>
</tr>
<tr>
<td>40</td>
<td>0.0000</td>
<td>24.3566</td>
<td>0.0000</td>
<td>24.3566</td>
</tr>
<tr>
<td>42.5</td>
<td>0.0000</td>
<td>14.7739</td>
<td>0.0000</td>
<td>14.7739</td>
</tr>
<tr>
<td>45</td>
<td>0.0000</td>
<td>7.5803</td>
<td>0.0000</td>
<td>7.5803</td>
</tr>
<tr>
<td>47.5</td>
<td>0.0000</td>
<td>4.4998</td>
<td>0.0000</td>
<td>4.4998</td>
</tr>
<tr>
<td>50</td>
<td>0.0000</td>
<td>2.8622</td>
<td>0.0000</td>
<td>2.8622</td>
</tr>
</tbody>
</table>

Por tanto el caudal en el punto donde se pretende realizar la construcción del puente corresponde a 83.20 m³/s y un tiempo de concentración de 25 min y según las curvas intensidad-duración-frecuencia la intensidad para dicho tiempo de concentración (Tc) es de 52mm/h.

5.4 Estudio de Impacto Ambiental

Cristian Rojas define evaluación como “un conjunto de técnicas que buscan como propósito fundamental un manejo de los asuntos humanos de forma que sea posible un sistema de vida en armonía con la naturaleza”25.

La evaluación del impacto ambiental, en el contexto actual, se entiende como un proceso de análisis que anticipa los futuros impactos ambientales negativos y positivos de acciones humanas, permitiendo seleccionar la alternativa que cumpla con los objetivos propuestos maximice los beneficios y disminuyan los impactos no deseados.

5.4.1 Identificación y Evaluación del paisaje

La Evaluación de Impacto Ambiental es la identificación de un estudio técnico de los efectos de una acción propuesta en el medio ambiente y los recursos naturales, para buscar medidas preventivas que permitan el desarrollo con el menor daño o deterioro ambiental el cual deberá incluir una comparación entre las diversas alternativas posibles para alcanzar el objetivo deseado\(^{26}\).

El objetivo de la evaluación es determinar la envergadura de los impactos potenciales con el propósito de definir las medidas de mitigación adecuadas, que eviten, reduzcan, controlen o compensen estos impactos, así como para determinar el nivel de estas medidas.

Al inicio del trabajo monográfico se realizó una visita al proyecto para hacer un reconocimiento de la situación donde se proyectará la obra propuesta para mejorar las vías de interés entre comunidades, y tener en cuenta el daño que puede sufrir el medio ambiente con la ejecución de la obra una vez aprobada por la alcaldía.

5.4.2 Especificaciones Técnicas Ambientales Generales

La reparación, reemplazo, ampliación y construcción de cualquier infraestructura puede producir efectos adversos sobre el medio ambiente si no se toman en consideración las medidas de mitigación necesarias. Los impactos ambientales comúnmente asociados a los proyectos son la contaminación del aire por generación de polvo, contaminación de cuerpos de agua por arrastre de sedimentos y mala disposición de excretas del personal y producción de desechos sólidos de construcción y en nuestro caso el ruido por el uso de maquinaria y equipo de construcción.

Estos efectos son generalmente de carácter temporal con un área de influencia puntual o local de intensidad variable, mitigables y prevenibles con la ampliación de normas y medidas sencillas.

5.4.3 Características del Área del Proyecto

a) No existen establecimientos industriales, talleres u otros que puedan afectar el proyecto.

b) No existen problemas de humo, malos olores o ruidos que puedan afectar la actividad de salud del personal.

c) El tipo de cobertura vegetal en el terreno es mínimo con áreas pobladas por las diferentes comunidades.

5.4.4 Efectos que genera el proyecto al Medio Ambiente

Un efecto importante es la producción del polvo provocado por los trabajos preliminares y el movimiento de tierra, ya que afectas a las personas aledañas al proyecto provocando enfermedades respiratorias, se mitigara con el riego de tal forma que en la época de construcción el polvo se mantenga controlado. También se procura no afectar más áreas de lo que se estime necesario.

En segunda estancia está el factor de ruido provocado durante el día por el uso de maquinaria, equipos livianos, así como de vibradores manuales o compactadoras que temporalmente producirán ruido, esto no será todo el día, ni por mucho tiempo, pero se recomendará los correspondientes silenciadores y el manejo calibrado y buen estado mecánico de los equipos de tal manera que se produzca la menor emisión de ruido posible.

Como tercer efecto se tiene la disposición de materiales y residuos sólidos, ya que los materiales removidos, así como los escombros, sobrante de materiales, empaques de cemento, plástico, madera, lata de pintura, varilla de hierro, solventes de pinturas, etc, estos se trasladarán a un sitio donde no afecten a terceros. Por ningún motivo se permitirá botar los residuos en ríos o quebradas, calzadas, canales de agua pluviales o cauces, o cualquier otro sitio donde puedan ser causa de contaminación o deterioro del paisaje.

Seguido tenemos los residuos líquidos como grasas, aceites y pintura con base de aceite se le deberá dar una disposición final de acuerdo a las siguientes recomendaciones, las grasas y aceites se deben almacenar en recipientes apropiados y podrán quemarse utilizandolos como combustible. Esto produce emisiones de
partículas como óxidos de azufre e hidrocarburo en forma temporal, pero es preferible que enterrarla porque puede contaminar los acuíferos y fuente de agua potable.

Para concluir tenemos el efecto de la tala de árboles, solo si es requerida para la construcción del proyecto se derribará el árbol y el hueco será rellenado. El contratista deberá contar con el permiso de MARENA, y de acuerdo al reglamento establece que cada año que tenga el árbol derribado se deberá sembrar 3 árboles hasta un máximo.

Impactos ambientales que genera el proyecto

Tabla 38: Impactos ambientales.

<table>
<thead>
<tr>
<th>Acciones impactantes</th>
<th>Efectos</th>
<th>Factor ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajos preliminares</td>
<td>Producción de polvo</td>
<td>Calidad del aire</td>
</tr>
<tr>
<td></td>
<td>Producción de ruidos</td>
<td>Ruido</td>
</tr>
<tr>
<td></td>
<td>Producción de desechos orgánicos e inorgánicos</td>
<td>Calidad y cantidad de aguas superficiales</td>
</tr>
<tr>
<td></td>
<td>Producción de excretas humanas</td>
<td>suelos</td>
</tr>
<tr>
<td>Trabajos de movimientos de tierra</td>
<td>Producción de polvo</td>
<td>Calidad de aire</td>
</tr>
<tr>
<td></td>
<td>Producción de ruido</td>
<td>Calidad de ruido</td>
</tr>
<tr>
<td></td>
<td>Riesgo de erosión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riesgo de inestabilidad de taludes</td>
<td>Calidad de suelo</td>
</tr>
<tr>
<td></td>
<td>Alteración de geomorofología</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riesgo de inundación o alteración régimen hidrológico</td>
<td>Cantidad y calidad de las aguas superficiales y de las aguas subterráneas</td>
</tr>
<tr>
<td></td>
<td>Riesgo de contaminación grasa y combustible</td>
<td>Cantidad y calidad de las aguas subterráneas</td>
</tr>
<tr>
<td></td>
<td>Posible aumento de arrastres de sedimentos</td>
<td>Calidad y cantidad de las aguas superficiales</td>
</tr>
<tr>
<td></td>
<td>Intrusión visual en el</td>
<td>Medio construido</td>
</tr>
</tbody>
</table>
Medida de mitigación de los impactos ambientales

Tabla 39: Medida de mitigación.

<table>
<thead>
<tr>
<th>Acciones impactantes</th>
<th>Efectos</th>
<th>Medidas de mitigación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajos preliminares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de polvo</td>
<td>Humedecimiento de la tierra</td>
<td></td>
</tr>
<tr>
<td>Producción de ruidos</td>
<td>Colocación de barreras</td>
<td></td>
</tr>
<tr>
<td>Producción de desechos orgánicos e inorgánicos</td>
<td>Selección del sitio receptor de los desechos, recolección, transporte y disposición de los desechos.</td>
<td></td>
</tr>
<tr>
<td>Producción de excretas humanas</td>
<td>Alquilar letrina para los trabajadores</td>
<td></td>
</tr>
<tr>
<td>Trabajos de movimientos de tierra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de polvo</td>
<td>Humedecimiento de la tierra</td>
<td></td>
</tr>
<tr>
<td>Producción de ruido</td>
<td>Colocación de barreras</td>
<td></td>
</tr>
<tr>
<td>Riesgo de erosión</td>
<td>Recubrir el suelo con tierra vegetal y plantas de cobertura al concluir los trabajos.</td>
<td></td>
</tr>
<tr>
<td>Riesgo de inestabilidad de taludes</td>
<td>Realizar el corte de talud con el ángulo de reposo adecuado</td>
<td></td>
</tr>
<tr>
<td>Alteración de geomorfología</td>
<td>Disponer en el sitio la corteza vegetal</td>
<td></td>
</tr>
<tr>
<td>Riesgo de inundación o alteración régimen hidrológico</td>
<td>Nivelar el terreno Restituir capa vegetal</td>
<td></td>
</tr>
<tr>
<td>Riesgo de contaminación grasa y combustible</td>
<td>Selección de sitios para mantenimiento de la maquinaria y recolectar residuos grasas y combustibles.</td>
<td></td>
</tr>
<tr>
<td>Riesgo de daño a la infraestructura pública o privada</td>
<td>Realización de sondeos para localizar red de cables, tuberías, etc. Reparación de daños causados a la propiedad pública o privada</td>
<td></td>
</tr>
<tr>
<td>Posible arrastre de sedimentos</td>
<td>Mantener adecuada compactación y protección contra el arrastre de sedimentos</td>
<td></td>
</tr>
<tr>
<td>Intrusión visual en el paisaje</td>
<td>Cercado provisional del sitio.</td>
<td></td>
</tr>
<tr>
<td>Obras de construcción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio a la forma de escorrentía</td>
<td>Realizar un adecuado drenaje del sitio durante la ejecución de los trabajos.</td>
<td></td>
</tr>
<tr>
<td>Producción de polvo</td>
<td>Humedecimiento de la tierra</td>
<td></td>
</tr>
<tr>
<td>Producción de ruido</td>
<td>Colocación de barreras</td>
<td></td>
</tr>
<tr>
<td>Riesgo de erosión</td>
<td>Recubrir el suelo con tierra vegetal y planta de cobertura al concluir los trabajos</td>
<td></td>
</tr>
<tr>
<td>Funcionamiento de obras de drenaje</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riesgo de inundaciones</td>
<td>Construcción de obra según diseño</td>
<td></td>
</tr>
<tr>
<td>Deterioro de la obra ante una eventual falta de mantenimiento</td>
<td>Mantenimiento sistemático y labor de apoyo comunitario.</td>
<td></td>
</tr>
</tbody>
</table>
6. DISEÑO HIDRAULICO

6.1 Trabajo de Gabinete

A partir del caudal de diseño mediante el estudio hidrológico (Qd=83.1929 m3/s), y de la sección natural real del cauce determinada por los estudios topográficos, se determinó por el programa Hec-ras las variables hidráulicas, y el tirante normal y el tirante crítico que puede producirse en el cauce durante una avenida.

6.2 Resultados obtenidos con el programa HEC-RAS

Ilustración 50: Sección aguas arriba.
Ilustración 51: Sección del puente.

Ilustración 52: Sección aguas abajo.
Ilustración 53: Perfil hidráulico.

Ilustración 54: Perfil Isométrico del cauce.
Tabla 40: Cálculo de las variables hidráulicas

<table>
<thead>
<tr>
<th>Est.</th>
<th>Q Total (m³/s)</th>
<th>Elevación del canal principal (m)</th>
<th>Elevación de la superficie del agua (m)</th>
<th>Elevación de la profundidad crítica (m)</th>
<th>Pendiente del gradiente de energía (m/m)</th>
<th>Velocidad de flujo (m/s)</th>
<th>Área de flujo (m²)</th>
<th>Ancho hidráulico (m)</th>
<th>Froude</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>83.2</td>
<td>97.65</td>
<td>99.8</td>
<td>100.19</td>
<td>0.007692</td>
<td>2.81</td>
<td>30.49</td>
<td>23.59</td>
<td>0.73</td>
</tr>
<tr>
<td>160</td>
<td>83.2</td>
<td>97.6</td>
<td>99.85</td>
<td>100.04</td>
<td>0.002896</td>
<td>1.95</td>
<td>43.55</td>
<td>27.89</td>
<td>0.47</td>
</tr>
<tr>
<td>140</td>
<td>83.2</td>
<td>96.97</td>
<td>99.8</td>
<td>100</td>
<td>0.002057</td>
<td>2.01</td>
<td>43.15</td>
<td>21.18</td>
<td>0.41</td>
</tr>
<tr>
<td>120</td>
<td>83.2</td>
<td>97.26</td>
<td>99.61</td>
<td>99.93</td>
<td>0.004015</td>
<td>2.5</td>
<td>33.88</td>
<td>18.46</td>
<td>0.56</td>
</tr>
<tr>
<td>100</td>
<td>83.2</td>
<td>97</td>
<td>99.08</td>
<td>99.76</td>
<td>0.01299</td>
<td>3.68</td>
<td>23.19</td>
<td>17.86</td>
<td>0.96</td>
</tr>
<tr>
<td>80</td>
<td>83.2</td>
<td>95.91</td>
<td>97.79</td>
<td>98.5</td>
<td>0.014779</td>
<td>3.73</td>
<td>22.35</td>
<td>16.17</td>
<td>0.99</td>
</tr>
<tr>
<td>60</td>
<td>83.2</td>
<td>94.51</td>
<td>97.76</td>
<td>98.08</td>
<td>0.003213</td>
<td>2.63</td>
<td>34.25</td>
<td>17.9</td>
<td>0.52</td>
</tr>
<tr>
<td>40</td>
<td>83.2</td>
<td>95.16</td>
<td>97.49</td>
<td>97.97</td>
<td>0.007027</td>
<td>3.09</td>
<td>27.6</td>
<td>16.27</td>
<td>0.71</td>
</tr>
<tr>
<td>20</td>
<td>83.2</td>
<td>95.01</td>
<td>97.53</td>
<td>97.8</td>
<td>0.004043</td>
<td>2.35</td>
<td>36.6</td>
<td>22.64</td>
<td>0.55</td>
</tr>
<tr>
<td>0</td>
<td>83.2</td>
<td>94.79</td>
<td>96.86</td>
<td>97.61</td>
<td>0.014602</td>
<td>3.88</td>
<td>21.72</td>
<td>14.57</td>
<td>0.99</td>
</tr>
</tbody>
</table>

A través del programa se observó que el tirante crítico para el caudal de diseño es de 2.08 m y la velocidad en esa sección es de 3.68 m/s.

6.3 Estudios de socavación

Tenemos en la parte derecha del estribo:

\[\alpha = 48^\circ \]

\[P_x = 0.90 \]

\[Q_1 = \text{caudal que teóricamente pasará por el estribo (83.20 m³/s)} \]

\[Q = \text{caudal total que escurre por el río (método racional Q=183.54 m³/s)} \]

\[Q_1/Q = 0.45 \]

\[P_q = 3.52 \]
Talud de 2.00 m el $P_R = 0.61$

$H_\phi = 1.65$

La socavación local del estribo será:

$$S = P_\alpha \times P_q \times P_R \times H_\phi$$

$$S = 0.90 \times 3.52 \times 0.61 \times 1.65 = 3.20 \text{ mts.}$$

Tenemos en la parte izquierda del estribo:

$\alpha = 52^\circ$

$P_\alpha = 0.92$

$Q_1 = \text{caudal que teóricamente pasara por el estribo} (83.20 \text{ m}^3/\text{s})$

$Q = \text{caudal total que escurre por el rio (método racional} \ Q = 183.54 \text{ m}^3/\text{s})$

$Q_1/Q = 0.45$

$Pq = 3.52$

Talud de 1.80 m el $P_R = 0.71$

$H_\phi = 1.45$

La socavación local del estribo será:

$$S = P_\alpha \times P_q \times P_R \times H_\phi$$

$$S = 0.92 \times 3.52 \times 0.71 \times 1.45 = 3.33 \text{ mts.}$$
7. **DISEÑO ESTRUCTURAL DEL PUENTE**

Para el análisis y diseño se considera:

- Reglamento Nacional de la construcción (RNC 2007)
- Manual del Instituto Americano del Concreto (ACI 2005)
- Manual del Instituto Americano del Acero (AISC 2005)
- Especificaciones Técnicas de la AASHTO 2005

7.1 **Diseño de la Superestructura**

7.1.1 **Diseño de Losa**

Se usará una losa de concreto.

- Ancho útil: 4.0 m
- Sobrecarga: HS- 20 – 44
- Luz útil: 15 m

Según el artículo 9.7.1.1 de la AASHTO LR (2005) especifica que la altura de un tablero de hormigón deberá ser mayor o igual que 175mm.

7.1.1.1 **Cálculo de peralte**

Según especificaciones AASHTO 8.9.2 (2005) para losas con refuerzo principal perpendicular a la dirección del tráfico se recomienda:
\[
T = \frac{1.2(L+3.05)}{30} \geq 0.17m
\]
Donde L es la separación =2m

\[
T = \frac{1.2(2.0 + 3.05)}{30}
\]

\[
T = 0.20 \geq 0.17m
\]

7.1.1.2 Cálculo carga muerta

❖ Peso de la losa

\[
W_{Losa} = Wc \times T \times 1
\]

\[
W_{Losa} = 2400 \times 0.2 \times 1
\]

\[
W_{Losa} = 480 Kg/m
\]

❖ Carpeta asfáltica

\[
W_{Asfalto} = Wa \times T \times 1
\]

\[
W_{Asfalto} = 2200 \times 0.05 \times 1
\]

\[
W_{Asfalto} = 110.00 Kg/m
\]

❖ Peso de la acera

\[
W_{Acera} = 0.15 \times 0.60 \times 2400 \times 2
\]

\[
W_{Acera} = 432.00 Kg/m
\]

❖ Peso barandal

\[
W_{Baranda} = 19 \times 2
\]

\[
W_{Baranda} = 38.00 Kg
\]
Sumatoria de carga

\[W_{\text{Losa}} = 480 \text{ Kg/m} \]
\[W_{\text{Asfalto}} = 110.00 \text{ Kg/m} \]
\[W_{\text{Acera}} = 432.00 \text{ Kg/m} \]
\[W_{\text{Baranda}} = 38.00 \text{ Kg/m} \]

\[\sum 1,060.00 \text{ Kg/m} \]

7.1.1.3 Peso de carga muerta ultima

Según el Art.32 de las normas NIC-2000 se toma un factor de carga de 1.4, entonces tenemos:

\[W_{\text{cmu}} = 1.4 \times W_{\text{cm}} \quad \text{Donde la carga total es } W_{\text{cm}} = 1,060 \text{ Kg/m} \]

Entonces tenemos:

\[W_{\text{cmu}} = 1.4 \times 1,060 \text{ Kg/m} \]
\[W_{\text{cmu}} = 1,484 \text{ Kg/m} \]

Momentos

Los momentos que se analizan son: momento por carga muerta, sobrecarga e impacto; obteniendo con ellos el momento total con el cual se procederá posteriormente al cálculo del refuerzo.

7.1.1.4 Momento debido a la carga muerta

\[M_{\text{cm}} = \frac{W_{\text{cmu}} \times S^2}{10} \]
\[W_{cm} = \frac{(1,484 \, Kg/m)(2.0 \, m)^2}{10} \]

\[W_{cm} = 593.6 \, kg \times m \]

7.1.1.5 Momento debido a la sobrecarga (Camión HS-20-44)

Según especificaciones AASHTO 3.24.3 caso A (2005), para refuerzo principal perpendicular a la dirección del tráfico, el momento por carga viva está dado por:

\[M_{cv} = \left(\frac{S+0.6}{9.75} \right) \times P \]

Corte máximo \(W = \text{brazo} \times w = 0.4 \times 20 = 8 \, \text{ton} = 8,000.00 \, \text{Kg} \)

Carga actuante \(P_{15} = W \times 1.7 = 1.7 \times 8000 = 13,600.00 \, \text{Kg} \)

\[M_{cv} = \left(\frac{2.0 \, m + 0.6}{9.75} \right) \times 13,600 \, Kg \]

\[M_{cv} = 3,626.67 \, Kg \times m \]

7.1.1.6 Momento debido al impacto

\[I = \left(\frac{15}{L+38} \right) \leq 30\% \]

Donde

I: fracción de impacto, siendo \(I_{\text{max}} = 30\% \)

L: es la longitud del puente (L= 15m) donde la carga produce el máximo esfuerzo.
\[I = \left(\frac{15}{15+38} \right) = 0.283 \]

\[M_I = I \times M_{Cv} \]

\[M_I = 0.283 \times 3626.67 \text{ Kg.m} \]

\[M_I = 1026.35 \text{ Kg.m} \]

7.1.1.7 Momento total de la losa

\[M_U = M_{cm} + M_{cv} + M_I \]

\[M_U = 593.6 \text{ Kg.m} + 3626.67 \text{ kg.m} + 1026.35 \text{ Kg.m} \]

\[M_U = 5,246.62 \text{ Kg.m} \]

7.1.1.8 Chequeo del peralte

De acuerdo a las especificaciones ACI (2005), se produce a calcular el peralte mínimo con la siguiente fórmula:

\[
d = \sqrt{\frac{M_u}{\varnothing \cdot \rho \cdot F_y \cdot b \left(1 - 0.59 \cdot \rho \cdot \frac{f_y}{f_c} \right)}}
\]

Tenemos el momento total el cual es \(M_U = 5,246.62 \text{ Kg.m} \)

Factor de resistencia \(\varnothing = 0.90 \)

Porcentaje mínimo de acero \(P = 0.0277 \)

\(b = 100 \text{ cm} \)

\(f_y = 2800 \text{ kg/cm}^2 \)

\(f_c = 210 \text{ kg/cm}^2 \)
\[d = \sqrt{\frac{5246.62 \times 100}{0.90 \times 0.0277 \times 2800 \times 100 \left(1 - 0.59 \times 0.0277 \times \frac{2800}{210}\right)}} \]

\[d = 9.80 \text{ cm} \]

Nota: El peralte debe de ser menor que el canto de eficaz.

7.1.1.9 Canto eficaz

Canto eficaz = espesor total – recubrimiento

\[\text{canto eficaz} = 0.20 - 2.5 = 17.5 \quad > 9.80 \text{ cm} \quad \text{"ok"} \]

Lo que quiere decir que el peralte asumido está correcto.

7.1.1.10 Calculo del refuerzo \(A_S \) por momento de flexión

\[d = 17.5 \text{ cm} \]

\[b = 100 \text{ cm} \]

\[M_u = 5246.62 \text{ kg}\cdot\text{m} \]

\[A_S = \frac{M_u \cdot b}{F_R \cdot F_Y \cdot d} \]

\[A_S = \frac{5246.62 \times 100}{0.9 \times 2800 \times 17.5} = 11.90 \text{ cm}^2 \]

Calcule el acero mínimo

\[A_{S\text{min}} = \rho_{min} \cdot b \cdot d \]

Donde

\[\rho_{min} = \frac{14}{F_y} = \frac{14}{2800} = 0.005 \]

\[A_{S\text{min}} = 0.005 \times 100 \times 17.5 = 8.75 \text{ cm}^2 \]
- Calculo del acero máximo

\[A_{S \text{ max}} = P_{\text{max}} \times b \times d \]

Donde

\[P_{\text{max}} = 0.5Pb \]

\[\beta_1 = 0.90 \]

\[Pb = \beta_1 \times \left(\frac{0.85 \times F_c}{F_y} \right) \times \left(\frac{6120}{6120 + F_y} \right) \]

\[Pb = 0.90 \times \left(\frac{0.85 \times 210}{2800} \right) \times \left(\frac{6120}{6120 + 2800} \right) = 0.039 \]

\[P_{\text{max}} = 0.5 \times 0.039 = 0.02 \]

\[A_{S \text{ max}} = 0.02 \times 100 \times 17.5 = 35 \text{ cm}^2 \]

\[A_S > A_{S \text{ min}} \text{ Por tanto } 11.90 > 8.75 \text{ cm}^2 \]

Por lo tanto utilizar 11.90 cm\(^2\) usando varilla de 5/8" con un área de acero de \(a_s = 1.98 \text{ cm}^2 \)

La separación será:

\[S = \frac{100 \times a_s}{A_s} \]

\[S = \frac{100 \times 1.98}{11.90} = 16.64 \text{ cm} \]

Usar varillas N° 5 @ 20cm perpendicular al tráfico.
7.1.1.11 Calculo del refuerzo A_S de repartición

Según especificaciones AASHTO 3.24.10.1 (2005), se coloca área de acero para suministrar distribución lateral de las cargas vivas concentradas, ubicándolo transversalmente a la dirección del refuerzo principal en todas las losas.

Se utilizará la siguiente fórmula:

$$\% = \frac{121}{\sqrt{s}}$$

Donde $s =$ separación entre viga y el porcentaje deberá ser $< 67\%$

$$\% = \frac{121}{\sqrt{2}} = 85.56\% > 67\%$$

Dado que no cumple la condición se utilizará 67%

El acero por repartición se determina multiplicando el porcentaje calculado por la cantidad de acero por flexión, con una distribución proporcional en el área equivalente a $L/2$ al centro de la sección, en los extremos con una longitud igual a $L/4$, se coloca como refuerzo el 50% del área de acero de $L/2$.

$$A_{S_{\text{repart}}} = \% A_S = 0.67 * 11.90 \text{ cm}^2 = 7.97 \text{ cm}^2 \text{ en } L/2$$

Usando varillas de $1/2''$ tenemos un área de acero de $a_s = 1.27 \text{ cm}^2$

Entonces la separación

$$S = \frac{100 * a_s}{A_s} = \frac{100 * 1.27}{7.97} = 15.93 \text{ cm}$$

Usar varillas $N^0 4 \ @ 20\text{cm}$

7.1.1.12 Calculo del refuerzo A_S por temperatura

Según la AASHTO 8.20.1 (2005), el área total de refuerzo suministrado será al menos de $2.64 \text{ cm}^2 /\text{m}$, en cada dirección.

$$A_{S_{\text{temp}}} = 0.002 * b * T = 0.002 * 100 * 20 = 4 \text{ cm}^2 > 2.64 \text{ cm}^2$$

Usando varillas de $1/2''$ tenemos $a_s = 1.27 \text{ cm}^2$
La separación es:

\[S = \frac{100 \times a_s}{A_s} = \frac{100 \times 1.27}{4} = 31.75 \text{cm} \]

Usar varillas N° 4 @ 30 cm

Detalles de refuerzo de losa

![Diagrama de refuerzo de losa](image)

7.1.2 Diseño de la Acera

Espesor de la acera \((T) = 0.15m\)

Longitud de la acera \((L) = 0.60m\)

Carga muerta

Peso de la acera= \(0.15 \times 0.60 \times 2400 = 216 \, Kg/m\)

Peso de la baranda (tubo de 3") = 19 \(= 19 \, Kg/m\)

Carga muerta total

\[W_{cm} = 216 \, \frac{kg}{m} + 19 \, \frac{kg}{m} = 235 \, kg/m \]
Carga muerta total ultima

\[W_{cmu} = 1.4 \times W_{cm} = 1.4 \times 235\text{kg/m} = 329\text{kg/m} \]

Carga viva de la acera

\[W_{cv} = 300\text{Kg/m} \]

\[W_{cvu} = 1.7 \times W_{cv} = 1.7 \times \frac{300\text{kg}}{m} = 510\text{kg/m} \]

Carga total

\[W_t = W_{cmu} + W_{cvu} = 329\text{kg/m} + 510\text{kg/m} = 839\text{kg/m} \]

Momento

\[M = \frac{W_t \times L^2}{2} = \frac{839 \times (0.6)^2}{2} = 151.02\text{Kg.m} \]

Calculo del refuerzo transversal

\[b = 100\text{cm} \]
\[d = 12.5\text{cm} \]
\[M_u = 151.02\text{Kg.m} \]

\[A_s = \frac{M_u \times b}{F_R \times F_Y \times d} = \frac{151.02 \times 100}{0.90 \times 2800 \times 12.5} = 0.48\text{cm}^2 \]
Calculo del acero mínimo

\[A_{S\,min} = P_{min} \times b \times d \]

Donde \(P_{min} = 0.005 \)

\[A_{S\,min} = 0.005 \times 100 \times 12.5 = 6.25 \text{cm}^2 \]

Calculo del acero máximo

\[A_{S\,max} = P_{max} \times b \times d \]

Donde

\(P_{max} = 0.5 \times Pb \)

\(\beta_1 = 0.90 \)

\[Pb = \beta_1 \times \left(\frac{0.85 \times F_c}{F_y} \right) \times \left(\frac{6120}{6120 + F_y} \right) \]

\[Pb = 0.90 \times \left(\frac{0.85 \times 210}{2800} \right) \times \left(\frac{6120}{6120 + 2800} \right) = 0.039 \]

\(P_{max} = 0.5 \times 0.039 = 0.02 \)

\[A_{S\,max} = 0.02 \times 100 \times 12.5 = 25 \text{cm}^2 \]

\(A_s < A_{S\,min} \quad \text{Utilizar } A_{S\,min} = 6.25 \text{cm}^2 \)

Usando varillas de 5/8" tenemos un área de acero de \(a_s = 1.98 \text{cm}^2 \)

La separación será:

\[S = \frac{100 \times a_s}{A_s} = \frac{100 \times 1.98}{6.25} = 31.68 \text{cm} \]

Usar varillas N° 5 @ 30 cm
Calculo del refuerzo longitudinal

\[
A_s = 67\% \quad A_s \text{trasversal}
\]

\[
A_s = 0.67 \times 6.25 = 4.19 \text{cm}^2
\]

Usando varillas de 1/2" tenemos \(a_s = 1.27 \text{cm}^2 \)

\[
S = \frac{100 \times a_s}{A_s} = \frac{100 \times 1.27}{4.19} = 30.31 \text{cm}
\]

Usar varillas N° 4 @ 25 cm

Calculo del refuerzo por temperatura

\[
A_{s \text{temp}} = 0.002 \times b \times T = 0.002 \times 100 \times 0.15 = 3 \text{cm}^2 > 2.64 \text{cm}^2
\]

Usando varillas de 3/8" tenemos \(a_s = 0.71 \text{cm}^2 \)

\[
S = \frac{100 \times a_s}{A_s} = \frac{100 \times 0.71}{3} = 23.67 \text{cm}
\]

Usar varillas N° 3 @ 25 cm
7.1.3 Diseño de la Viga Metálica

Acero estructural

Límite de fluencia \(F_y = 36.00 \text{ Ksi} \)

Esfuerzo permisible por flexión \(0.65F_y = 21.6 \text{ ksi} \)

Esfuerzo permisible por cortante \(0.33F_y = 11.88 \text{ ksi} \)

Peso del acero \(W_z = 490.00 \text{ ksi} \)

Módulo de elasticidad \(E = 29000.00 \text{ ksi} \)

Concreto estructural clase A

Peso del concreto \(W_c = 150.00 \text{ pcf} \)

Resistencia a la compresión = \(F''_c = 3000 \text{ psi} \)

Esfuerzo permisible a la compresión \(0.40F''_c = 1200 \text{ psi} \)

Peso del asfalto \(W_a = 140 \text{ psi} \)

Carga muerta inicial.

\(B_{losa} = 2m = 6.56 \text{ ft} \)

\(H_{losa} = 0.20m = 0.66 \text{ ft} \)

\(L_{losa} = 15m = 49.21 \text{ ft} \)

Peso de losa: \(0.15 \times 0.66 \times 6.56 = 0.66 \text{ K/ft} \)

Peso de viga (pre dimensionamos W36x194): \(0.194 \text{ K/ft} \)

\(W = 0.66 \text{ K/ft} + 0.194 \text{ K/ft} = 0.854 \text{ K/ft} \)
Calcular el momento

\[Mcm = \frac{wl^2}{8} = \frac{0.854 \times \frac{K}{ft} \times (49.21 ft)^2}{8} = 258.51 \text{ K*ft} \]

Calcular carga viva a través de línea de influencia.
Encontrando momento máximo para diseño colocando el centro de gravedad en el centro de viga camión HS20-44

Datos importantes
Carga eje 1 = 32K =P1 Distancia eje 1-2 = 18ft =X1
Carga eje 2 = 32K =P2 Distancia eje 2-3 =14ft =X2
Carga eje 3 = 8K =P3

❖ Calculo de la distancia “a”.

\[a = \frac{(P1 \times X1) - (P3 \times X2))}{(P1 + P2 + P3)} \]
\[a = \frac{((32K \times 18ft) - (8K \times 14ft))}{(32K + 32K + 8K)} \]

\[a = 6.44ft \]

- **Momento máximo por carga viva**

\[Mcv = \left(\frac{(P1 + P2 + P3)(L/2) + (a/2))}{L} \right)^2 - (P1 \times X1) \]

\[Mcv = \left(\frac{(32K + 32K + 8K)(49.21ft/2) + (6.44ft/2))}{49.21} \right)^2 - (32 \times 18) \]

\[Mcv = 556.8 \ k \cdot ft \]

- **Calculo de cortante máximo**

![Diagrama de cargas](image-url)
Carga eje 1 = 32K = P1 Distancia eje 1-2 = 18ft = X1
Carga eje 2 = 32K = P2 Distancia eje 2-3 = 14ft = X2
Carga eje 3 = 8K = P3

❖ Cortante máximo.

\[V_{cv} = \frac{(P1 + P2 + P3)(L - X1 + a)}{L} \]

\[V_{cv} = \frac{(32K + 32K + 8K)(49021ft - 18ft + 6.44ft)}{49.21ft} \]

\[V_{cv} = 55.09K \]

❖ Factor de distribución

\[Fd = \frac{S}{5.5} = \frac{6.56ft}{5.5} = 1.19 \]

❖ Factor de impacto

\[I = \frac{15.24}{(38 + s)} = \frac{15.24}{(38 + 6.56ft)} = 0.34 \]

0.34 > 0.3 Usar 0.3

❖ Momento máximo por carga viva más impacto y distribución

\[M_{cv} = 556.8 K \cdot ft \times 1.19 \times 1.3 \]

\[M_{cv} = 861.3696 K \cdot ft \]

❖ Cortante máximo por carga viva más impacto

\[V_{cv} = 55.09K \times 1.3 = 71.617K \]
7.1.4 Calculo del momento del Diafragma

Las especificaciones de AASHTO 8.12.1. Indica, serán colocados diafragmas en los extremos de las vigas T y de las vigas rectangulares, a menos que otros medios sean suministrados, para resistir cargas laterales y mantener la geometría de la sección.

La especificación de AASHTO 8.12.2 dice que en construcción un diafragma intermedio es recomendado en el punto de máximo momento positivo para luces mayores de 40 pies (12.19m).

\[S = 2m = 6.56 \text{ ft} \]

\[Fd = 0.9 \]

\[P = 24.00 \text{ klb} \]

\[P_1 = 21.6 \text{ klb} \]

- **Calculo del momento máximo por carga puntual**

\[M_u = \frac{p_1 \cdot L}{4} = \frac{21.6 \text{ klb} \cdot 6.67 \text{ ft}}{4} = 36.018 \text{ klb. ft} \]

- **Calculo de Módulo de Sección**

\[F_b = 21.6 \text{ klb/in}^3 \]

\[S_x = \frac{M_u \cdot 12}{F_b} \]

\[S_x = \frac{36.018 \text{ klb. ft} \cdot 12}{21.6 \text{ klb/in}^3} = 20.01 \text{in}^3 \]

Perfil seleccionado según tabla\(^{27}\) W12x26

• Momentos totales de carga muerta y carga viva más diafragmas.

\[Mt = 258.51 \, K/ft + 861.3696 \, K/ft + 36.018 \, K/ft \]

\[Mt = 1155.90 \, K/ft \]

• Calculo del perfil a utilizar

\[F_b = 21.6 \, klb/in^3 \]

\[S_x = \frac{M_u \times 12}{F_b} \]

\[S_x = \frac{115590 \, klb/ft \times 12}{21.6 \, klb/in^3} = 642.17 \, in^3 \]

"OK" cumple para el perfil seleccionado

• Peralte mínimo

\[d = \frac{L}{25} = \frac{(49.21 \times 12)in}{25} = 23.62in \]

Según los datos calculados se utilizara un perfil W36x194 que tiene un módulo de sección de 664 in³.

Propiedades del perfil de acero W36x194 a utilizar.

\[A = 57 \, in^2 \]

\[d = 36.49 \, in \]

\[t_w = 0.765 \, in \]

\[S_x = 664 \, in^3 \]

\[I = 12,100 \, in^4 \]

\[b_f = 12.115 \, in \]

\[t_f = 1.26 \, in \]

\[h_w = 32.0125 \, in \]
• Revisión del perfil

✓ Esfuerzos

\[F_D = \frac{M_{max}}{S_x} = \frac{(1155.90 \times 12) \text{ ksi}}{664 \text{ in}^4} \]

\[F_D = 20.90 \text{ ksi} < 21.6 \text{ ksi} "OK" \text{ cumple} \]

✓ Por pandeo

Patín a compresión

\[\frac{b_f}{t_f} = \frac{103}{\sqrt{F_b}} \leq 24 \]

Esfuerzo del acero a compresión \(F_b = 15.35 \text{ksi} \)

\[\frac{103}{\sqrt{15.35}} = 26.28 > 24 \text{ usar 24} \]

\[\frac{12.115 \text{ in}}{1.26 \text{ in}} = 9.62 < 24 \text{ "OK" cumple.} \]

✓ Pandeo del alma

\[\frac{h_w}{t_w} < 68 \]

\[\frac{h_w}{t_w} = \frac{32.0125 \text{ in}}{0.765 \text{ in}} = 41.846 < 68 \text{ "OK" cumple} \]
Propiedades del diafragma W12X26

\[A = 22.30 \text{ in}^2 \]
\[d = 18.25 \text{ in} \]
\[t_w = 0.44 \text{ in} \]
\[S_x = 146.00 \text{ in}^3 \]
\[I = 1330.00 \text{ in}^4 \]
\[b_f = 11.00 \text{ in} \]
\[t_f = 0.69 \text{ in} \]
\[h_w = 16.38 \text{ in} \]

7.1.5 Diseño de la placa base

\[L = 49.2 \text{ m} \]
\[W_{cm} = 0.854 \text{ K/ft} \]
\[P_{cv} = 71.617 \text{ K} \]

❖ **Cortante por carga muerta**

\[V_{cm} = \frac{(0.854 \text{ K/ft} \times 49.2 \text{ m})}{2} \]
\[V_{cm} = 20.77 \text{ K} \]

❖ **Cortante por carga viva**

\[V_{cv} = \frac{(71.617 \text{ K})}{2} \]
\[V_{cv} = 35.81 \text{ K} \]
Cortante total

\[V_t = V_{cm} + V_{cv} = 20.77K + 35.81K \]

\[V_t = 56.58K \]

**Probando PL 14" × 20"

Tenemos \(A_1 = 14\text{in}^2 \): \(A_2 = 20\text{in}^2 \)

\[A_T = 14 \times 20 = 280\text{in}^2 \]

\[t = \frac{V_t}{A_T} = \frac{56.88K}{280\text{in}^2} \]

\[t = 0.20\text{ ksi} \]

\[t = 0.35f'c\sqrt{(A_2/A_1)} \]

\[t_{perno} = 0.35(3000\text{psi})\sqrt{(20\text{in}^2/14\text{in}^2)} \]

\[t_{perno} = 1254.99\text{ psi} \equiv 1.25\text{ksi} \]

\[t_{perno} > t \Rightarrow 1.25\text{ksi} > 0.20\text{ksi} \]

Espesor de la placa

\[t = m \times \frac{3t}{\sqrt{0.75fy}} = 3 \times \frac{3(0.20\text{ksi})}{0.75(36)} \]

\[t = 0.45 \text{ in} \]

Por tanto usar **PL 14" × 20" × 1"**
Pernos de anclaje con sismo

Cortante

\[V = 0.45 \times 20.77 \times 2 = 18.69 \text{K} \]

Probando perno de 1"

\[V_{\text{max}} = 110 \, d^2 \sqrt{f'c} \]

\[V_{\text{max}} = 110 \times 1^2 \times \sqrt{3000 \text{psi}} \]

\[V_{\text{max}} = 6.025 \text{K} \]

Número de pernos

\[N = \frac{V}{V_{\text{max}}} = \frac{18.69 \text{K}}{6.025 \text{K}} \]

\[N = 3.10 \approx 4 \text{ pernos de 1"} \]
7.2 Diseño de la subestructura

7.2.1 Diseño de la cortina

Según AASHTO 1.2.22 (2005), la cortina está empotrada sobre la viga de apoyo, actuando en ellas las fuerzas de: empuje de tierra (E), fuerzas longitudinales (FL) y la fuerza de sismo (EQ).

❖ Fuerza longitudinal

\[F_L = \frac{0.05P}{2H} \]

Dónde:

P = peso del camión

H = Altura de la cortina

\[P = \frac{(32000 lb \times 0.8)}{2.2 lb} = 11636.36 \text{ kg} \]

H = 1m

\[F_L = \frac{0.05(11636.36 kg)}{2(1m)} \]

\[F_L = 290.91 \text{Kg} \]

\[Brazo = H + 6' = 1 + 1.83m = 2.83m \]

❖ Momento longitudinal

\[M_{FL} = F_L \times Brazo = 290.91 kg \times 2.83m \]

\[M_{FL} = 823.28 \text{ kg} \cdot \text{m} \]
Cálculo de la fuerza por sismo

Ancho de la cortina= 0.30m
Altura de la cortina= 1 m
Largo de la cortina= 7 m

Peso de la cortina

\[W = 2400 \text{ kg/m} \times 0.3m \times 1m \times 7m \]

\[W = 5040 \text{ kg} \]

Momento por sismo

\[S = CW = 0.45 \times 5040 \text{ kg} = 2268 \text{ kg} \]

\[M = \frac{S \times H}{2} = \frac{(2268)(1)}{2} = 1134 \text{ kg} \cdot \text{m} \]

Empuje en la cortina

Se considera una sobrecarga del suelo equivalente líquido a 2' de alto con una presión de 480 kg/m3, según AASHTO 3.20.

Presión = 480 kg/m3

Altura= 0.61 m

\[P_{sob} = 480 \text{ kg/m}^3 \times 0.61m = 292.61 \text{ kg/m}^2 \]

\[E_{sob} = P_{sob} \times H = 292.61 \text{ kg/m}^2 \times 1m = 292.61 \text{ kg/m} \]

\[P_s = 480 \text{ kg/m}^3 \times 1m = 480 \text{ kg/m}^2 \]
\(E_s = P_s \times \frac{H}{2} = 480 \text{ kg/m}^2 \times \frac{1m}{2} = 240 \text{ kg/m} \)

Empuje total sobre la cortina

\(E_T = E_{sob} + E_s = 292.61 \text{ kg/m} + 240 \text{ kg/m} = 532.61 \text{ kg/m} \)

Calculo del momento de empuje

\(M_{Esob} = E_{sob} \times \frac{H}{2} = 292.61 \text{ kg/m} \times \frac{1m}{2} = 146.31 \text{ kg} \cdot \text{m} \)

\(M_{Es} = E_s \times \frac{H}{3} = 240 \text{ kg/m} \times \frac{1m}{3} = 80 \text{ kg} \cdot \text{m} \)

Momentos finales

\(M = 1.3(M_{Esob} + M_{Es} + M_{FL}) \)

\(M = 1.3(146.31 \text{ kg} \cdot \text{m} + 80 \text{ kg} \cdot \text{m} + 823.28\text{kg} \cdot \text{m}) \)

\(M = 1364.467 \text{ kg} \cdot \text{m} \)

\(M = 1.3(M_{Esob} + M_{Es} + M_s) \)

\(M = 1.3(146.31 \text{ kg} \cdot \text{m} + 80 \text{ kg} \cdot \text{m} + 1134 \text{ kg} \cdot \text{m}) \)

\(M = 1768.40 \text{ kg} \cdot \text{m} \)

Se toma el **momento máximo 1768.40 kg·m**

Calculo del área de acero

\(M = 1768.40 \text{ kg} \cdot \text{m} \)
b = 1m

d = 27cm

\[As = \frac{M_u}{F_r \times F_y \times d} = \frac{1768.40 \text{ kg} \cdot m \times 100}{0.90 \times 2800 \text{ kg/m}^3 \times 27 \text{ cm}} = 2.60 \text{ cm}^2 \]

Acero mínimo

\[A_{s\text{min}} = \frac{14.1 \times b \times d}{F_y} = \frac{14.1 \times 100 \text{ cm} \times 27 \text{ cm}}{2800} = 13.60 \text{ cm}^2 \]

Acero máximo

\[A_{s\text{max}} = 0.5 \times P_b \times b \times d \]

\[A_{s\text{max}} = 0.5 \times \left[\beta_1 \times \left(\frac{0.85 \times f'c}{F_y} \right) \left(\frac{6120}{6120 + F_y} \right) \right] \times b \times d \]

\[A_{s\text{max}} = 0.5 \times \left[0.90 \times \left(\frac{0.85 \times 210}{2800} \right) \left(\frac{6120}{6120 + 2800} \right) \right] \times 100 \times 27 \]

\[A_{s\text{max}} = 53.14 \text{ cm}^2 \]

Se toma el área de acero mínima de 13.60 cm²

Usar varilla de 5/8” con área de acero de \(a_s = 1.98 \text{ cm}^2 \)

La separación será:

\[S = \frac{100 \times 1.98 \text{ cm}^2}{13.60 \text{ cm}^2} = 14.56 \text{ cm} \quad \text{Usar varilla número 5@ 15 cm.} \]

Chequeo por corte

\[F = 1.3(F + F_L) = 1.3(532.61 \text{ kg} + 290.91 \text{ kg}) = 1070.58 \text{ kg} \]

\[F = 1.3(F + S) = 1.3(532.61 \text{ kg} + 2268 \text{ kg}) = 3640.79 \text{ kg} \]

Se toma el corte mayor 3640.79 kg
corte del concreto = 0.5 × $\sqrt{f'c} \times b \times d$

corte del concreto = 0.5 × $\sqrt{210 \times 100 \times 27}$

corte del concreto = 19563.36 kg > 3640.79kg

La separación es:

$$S = \frac{d}{2} = \frac{27}{2} = 13.5\,cm$$

Colocar estribos numero 3 @ 15cm

7.2.2 Diseño de la viga de apoyo

Ancho de la viga = 0.83m

Alto de la viga = 0.45m

Largo de la viga = 7m

- Carga muerta

$$W_{viga} = 2400\,kg/m^3 \times 0.83m \times \frac{0.45m}{2} = 448.2\,kg/m$$
• **Cálculo del momento y cortante de la viga**

\[M_{cm} = \frac{W \times L^2}{8} = \frac{(448.2 \text{ kg/m})(7m)^2}{8} = 2745.23 \text{ kg} \cdot \text{m} \]

\[V = \frac{W \times l}{2} = \frac{(448.2 \text{ kg/m})(7m)}{2} = 1568.7 \text{ kg} \]

• **Carga viva camión (HS20-44)**

\[P_{camión} = 32\text{Klb} = \frac{3200\text{lb}}{2.2\text{lb}} = 14545.45 \text{ kg} \]

\[M = \frac{W \times l}{4} = \frac{14545.45\text{kg} \times 7m}{4} = 25454.54\text{kg} \cdot \text{m} \]

\[V = \frac{W}{2} = \frac{14545.45\text{kg}}{2} = 7273\text{kg} \]

• **Sismo en la viga de apoyo**

\[Viga = W = 2400 \text{ kg/m}^3 \times 0.83m \times 0.45m = 896.4 \text{ kg/m} \]

\[S = CW = 0.45 \times 896.4 \text{ kg/m} = 403.38\text{kg/m} \]

• **Carga muerta en la superestructura**

Peso de losa (Wl): 2400 x 2 x 15 x0.20 = 14400 kg

Peso del asfalto (Wa): 2200 x 2 x 15 x0.05 = 3300 kg

Peso de la acera (Wa): 2400 x 0.60 x 15 x0.15 = 3240 kg

Peso de la viga l (Wv): 288.67 x 15 = 4330.05 kg

Peso del diafragma (Wd): 38.70 x 2 x 7 = 541.80 kg
Peso total (Wt) = \(14400 + 3300 + 3240 + 4330.05 + 541.80 = 25811.85 \text{ kg} \)

- **Momento sísmico de la superestructura**

\[
S = cWt = 0.45 \times 25811.85 \text{ kg} = 11615.33 \text{ kg}
\]

\[
M_s = \frac{Wt \times l}{8} = \frac{25811.85 \times 7}{8} = 22585.37 \text{ kg} \cdot \text{m}
\]

\[
V_s = \frac{Wt \times l}{10} = \frac{25811.85 \times 7}{10} = 18068.30 \text{ kg} \cdot \text{m}
\]

- **Momentos finales de la viga de apoyo**

\[
M = 1.3(M_{cm} + M_{cv})
\]

\[
M = 1.3(2745.23 \text{ kg} \cdot \text{m} + 25454.54 \text{ kg} \cdot \text{m})
\]

\[
M = \underline{36659.70} \text{ kg} \cdot \text{m}
\]

\[
M = 1.3(M_{cm} + M_s)
\]

\[
M = 1.3(2745.23 \text{ kg} \cdot \text{m} + 22585.37 \text{ kg} \cdot \text{m})
\]

\[
M = \underline{32929.78} \text{ kg} \cdot \text{m}
\]

Se toma el momento máximo 36659.70 kg·m

- **Calculo del área de acero**

\[
M = 36659.70 \text{ kg} \cdot \text{m}
\]

\[b = 100 \text{ cm}\]

\[d = 42 \text{ cm}\]
As = \frac{Mu}{Fr \times Fy \times d} = \frac{36659.70 \, kg \cdot m \times 100}{0.90 \times 2800 \, kg/m^3 \times 42 \, cm} = 34.64 \, cm^2

Acero mínimo

As_{min} = \frac{14.1 \times b \times d}{Fy} = \frac{14.1 \times 100 \, cm \times 42 \, cm}{2800} = 21.15 \, cm^2

Acero máximo

As_{max} = 0.5 \times P_b \times b \times d

As_{max} = 0.5 \times \left[\beta_1 \times \left(\frac{0.85 \times f'c}{Fy} \right) \left(\frac{6120}{6120 + Fy} \right) \right] \times b \times d

As_{max} = 0.5 \times \left[0.90 \times \left(\frac{0.85 \times 210}{2800} \right) \left(\frac{6120}{6120 + 2800} \right) \right] \times 100 \times 42

As_{max} = 82.67 \, cm^2

Se usará acero 34.64 cm²

Usar varilla de 5/8" con un área de acero de a_s = 1.98 cm²

La separación es

S = \frac{100 \times 1.98 \, cm^2}{34.64 \, cm^2} = 5.71 \, cm \quad \text{Usar varilla numero 5@ 15 cm.}

Chequeo por corte

\[V = 1.3(V_{cm} + V_{cv}) = 1.3(1568.7 \, kg + 7273 \, kg) = 11494.21 \, kg \]

\[V = 1.3(V_{cm} + Vs) = 1.3(1568.7 \, kg + 18068.30 \, kg) = 25528.1 \, kg \]

Se toma el corte mayor 25528.1 kg
Vc >Vu donde el espaciamiento máximo será \(S = \frac{d}{2} = \frac{42}{2} = 21 \text{ cm} \)

Usar estribo número 3 a cada 15 cm

7.2.3 Diseño del neopreno

\[Ap = \frac{P}{f_c \times \phi_c} \]

Donde

- \(Ap \): Área de aplastamiento
- \(P \): carga que llega a la viga de apoyo
- \(f_c \): esfuerzo máximo del concreto
- \(\phi_c \): constante de corte (0.7)

\[P = V_{cm} + V_{cv} + V_s = 1568.7 + 7273 + 18068.30 = 26910 \text{ kg} \]

\[Ap = \frac{26910 \times 2}{210 \times 0.7} = 366.12 \text{ cm}^2 \]

\[B_b = \sqrt{A_p} = \sqrt{366.12} = 19.13 \text{ cm} \]

Usar base de neopreno de 35 x 50 cm con un espesor de 5cms

7.2.4 Diseño del estribo

El estribo a diseñar será de concreto ciclópeo, obteniendo con esto la ventaja de que su diseño es más simple, ya que consiste en asumir su sección y luego verificar tres condiciones: deslizamiento, volteo y presiones.

Presión admisible \(6s = 50000 \text{ kg/m}^2 \) (obtenida de los estudios de suelo).
Ancho del estribo (B) = 7m
Altura del estribo (H) = 7.50m
Peso de tierra (Ws) = 1680 kg/m³
Angulo de fricción interna (Ø)=30°
Coeficiente de fricción (f)=0.40

\[
Ka = \frac{1 - \sin\phi}{1 + \sin\phi} = \frac{1 - \sin30}{1 + \sin30} = 0.33
\]
Coeficiente de presión pasiva (kp)

\[K_p = \frac{1 + \sin\varphi}{1 - \sin\varphi} = \frac{1 + \sin30}{1 - \sin30} = 3 \]

Presión activa (empuje total de tierra)

\[P = \frac{1}{2} \times Ka \times Ws \times H^2 \times B \]

\[P = \frac{1}{2} \times 0.33 \times 1680 \frac{kg}{m^3} \times (7.50 \, m)^2 \times 7 \, m = 109147.5 \, kg \]

\[M = \frac{P \times H}{3} = \frac{109147.5 \times 7.50}{3} = 272868.75 \, kg \times m \]

Carga muerta proveniente de la superestructura

P = Wt x Numero de viga

P = 25811.85 kg x 3 viga = 77435.55 kg

B=1.27 m

M= 77435.55 kg x 1.27m = 98343.15 kg*m

Carga viva sobre la superestructura

P= 20k = 9090.91 kg

P= 1.30 x 9090.91 kg = 11818.18 kg

B=1.27 m

M= 11818.18 kg x 1.27m = 15009.10 kg*m
Carga de la subestructura

Concreto ciclópeo \((W_{cc}) = 1800 \text{ kg/m}^3\)

<table>
<thead>
<tr>
<th>Pesos</th>
<th>(W) (kg)</th>
<th>(X) (m)</th>
<th>(Mr) (Kg*m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_1=2400\times0.3\times1.45\times7)</td>
<td>7308</td>
<td>1.68</td>
<td>12277.44</td>
</tr>
<tr>
<td>(W_2=2400\times0.53\times0.45\times7)</td>
<td>4006.8</td>
<td>1.265</td>
<td>5068.60</td>
</tr>
<tr>
<td>(W_3=1800\times0.83\times5.45\times7)</td>
<td>56996.1</td>
<td>1.415</td>
<td>80649.48</td>
</tr>
<tr>
<td>(W_4=1800\times1.50\times6.90\times7)</td>
<td>130410</td>
<td>2.58</td>
<td>336457.8</td>
</tr>
<tr>
<td>(W_5=1800\times0.5\times3\times6.9\times7)</td>
<td>130410</td>
<td>4.33</td>
<td>564675.3</td>
</tr>
<tr>
<td>(W_6=1680\times0.5\times3\times6.90\times7)</td>
<td>121716</td>
<td>5.33</td>
<td>648746.28</td>
</tr>
<tr>
<td>(W_7=1680\times1\times6.90\times7)</td>
<td>81144</td>
<td>6.83</td>
<td>554213.52</td>
</tr>
<tr>
<td>(W_8=1800\times7.33\times0.6\times7)</td>
<td>55414.8</td>
<td>3.665</td>
<td>203095.24</td>
</tr>
<tr>
<td>(\Sigma) 587405.7</td>
<td>2405183.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Centro de gravedad: \[\frac{\sum Mr}{\sum W} = \frac{2405183.66}{587405.7} = 4.095\text{ m}\]

Presión debido a la sobrecarga de tierra

\(H\) sobrecarga = 0.60 m

\(H\) estribo = 7.50 m

\[P = \frac{1}{3} \times \delta \times H = \frac{1}{3} \times 1680 \times 0.60 = 336 \text{ Kg/m}^2\]
\[M = P \times H_E \times B \times \frac{H_E}{2} = 336 \times 7.50 \times 7 \times 3.75 = 66150 \, Kg \cdot m \]

Sismo en la subestructura

<table>
<thead>
<tr>
<th>Pesos</th>
<th>W (kg)</th>
<th>X (m) vertical</th>
<th>Mr (Kg *m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1=2400 x 0.3 x 1.45 x 7 x 0.45</td>
<td>3288.6</td>
<td>6.775</td>
<td>22280.27</td>
</tr>
<tr>
<td>W2=2400 x 0.53 x 0.45 x 7 x 0.45</td>
<td>1803.06</td>
<td>6.275</td>
<td>11314.20</td>
</tr>
<tr>
<td>W3=1800 x 0.83 x 5.45 x 7 x 0.45</td>
<td>25648.25</td>
<td>3.325</td>
<td>85280.43</td>
</tr>
<tr>
<td>W4=1800 x 1.50 x 6.90 x 7 x 0.45</td>
<td>58684.5</td>
<td>4.05</td>
<td>237672.23</td>
</tr>
<tr>
<td>W5=1800 x 0.5 x 3 x 6.9 x 7 x 0.45</td>
<td>58684.5</td>
<td>2.90</td>
<td>170185.05</td>
</tr>
<tr>
<td>W6=1680 x 0.5 x 3 x 6.90 x 7 x 0.45</td>
<td>52164</td>
<td>5.20</td>
<td>271252.8</td>
</tr>
<tr>
<td>W7=1680 x 1 x 6.90 x 7 x 0.45</td>
<td>34776</td>
<td>4.05</td>
<td>140842.8</td>
</tr>
<tr>
<td>W8=1800 x 7.33 x 0.6 x 7 x 0.45</td>
<td>24936.66</td>
<td>0.30</td>
<td>7481.0</td>
</tr>
<tr>
<td>Σ 259985.57</td>
<td>Σ 946308.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sismo en la superestructura

Altura de la viga= 0.91m

\[P = C \times P_{cm} = 0.45 \times 77435.55kg = 34846kg \]

\[B = 7.5m - \left(\frac{0.91m}{2} \right) = 7.05m \]

Momento en la superestructura

\[M = P \times B = 34846kg \times 7.05m = 245,664.3kg \cdot m \]

Sismo en la masa del suelo

5% del empuje provocado por la presión activa

\[P = 0.05 \times 109147.5kg = 5457.38kg \]

\[M = 0.05 \times 272,868.75kg \cdot m = 13643.44kg \cdot m \]

Diseño de vuelco

Combinaciones de cargas **Grupo I= D + L + E**
Donde

D: carga muerta
L: carga viva
E: carga de empuje del suelo

<table>
<thead>
<tr>
<th>Carga</th>
<th>Vertical(kg)</th>
<th>Horizontal(kg)</th>
<th>Momento(kg·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>587,405.7</td>
<td>2,405,183.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77,435.55</td>
<td>98,343.15</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>11,818.18</td>
<td>15,009.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>66,150</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>109,147.5</td>
<td>272,868.75</td>
<td></td>
</tr>
</tbody>
</table>

\[
Fs = \frac{2,405,183.66 \text{kg} \cdot \text{m} + 98,343.15 \text{kg} \cdot \text{m} + 15,009.10 \text{kg} \cdot \text{m}}{66,150 \text{kg} \cdot \text{m} + 272,868.75 \text{kg} \cdot \text{m}}
\]

\[
Fs = 7.43 > 1.5 \; \text{ok}
\]

Grupo VII = D + EQ + E

Donde

EQ: carga de la fuerza sísmica

<table>
<thead>
<tr>
<th>Carga</th>
<th>Vertical(kg)</th>
<th>Horizontal(kg)</th>
<th>Momento(kg·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>587,405.7</td>
<td>2,405,183.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77,435.55</td>
<td>98,343.15</td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td>259,985.57</td>
<td>946,308.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34,846</td>
<td>245,664.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,457.38</td>
<td>13,643.44</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>109,147.5</td>
<td>272,868.75</td>
<td></td>
</tr>
</tbody>
</table>

\[
Fs = \frac{2,405,183.66 \text{kg} \cdot \text{m} + 98,343.15 \text{kg} \cdot \text{m}}{946,308.78 \text{kg} \cdot \text{m} + 245,664.3 \text{kg} \cdot \text{m} + 13,643.44 \text{kg} \cdot \text{m} + 272,868.75 \text{kg} \cdot \text{m}}
\]

\[
Fs = 1.70 > 1.5 \; \text{ok}
\]
Esfuerzos actuantes en la base del muro

Momento resistente

\[M_{\text{Resistente}} = 2,405,183.66 \text{kg} \cdot \text{m} + 98,343.15 \text{kg} \cdot \text{m} = 2,503,526.81 \text{kg} \cdot \text{m} \]

Momento de volteo = \[M_{\text{EQ}} + M_{E} = 1,478,485.27 \text{kg} \cdot \text{m} \]

Fuerza horizontal total = 409,436.45 kg

Fuerza vertical total = 664,841.25 kg

Posición de la resultante

\[X = \frac{M_{\text{Resistente}} - M_{\text{volteo}}}{F_{VT}} \]

\[X = \frac{(2,503,526.81 \text{kg} \cdot \text{m}) - (1,478,485.27 \text{kg} \cdot \text{m})}{664,841.25 \text{kg}} = 1.54m < \frac{L}{3} \]

\[\frac{L}{3} = 7.33m/3 = 2.44m \Rightarrow X < \frac{L}{3} \text{ OK} \]

\[\delta = \frac{2P}{3BX} = \frac{2 \times 664,841.25 \text{ kg}}{3 \times 7m \times 1.54m} \]

\[\delta = 41,115.72 \text{ kg/m}^2 < 50,000.00 \text{ kg/m}^2 \text{ OK.} \]

Revisión de estribo por cortante

\[F_{sd} = \frac{F + P_{P}}{P} \]

Donde

\[P_{P} = \text{Presión pasiva.} \]

\[P = \text{Presión activa.} \]
Presión pasiva

\[P_p = \frac{1}{2} W \times h^2 \times K_p \times L \]

L=7m, h=4.26m

\[P_p = \frac{1}{2} \times 1680\,kg \times (4.26\,m)^2 \times 3\,m \times 7\,m \]

\[P_p = 320,123.66\,kg \]

Fuerza de fricción (F).

\[F = f \times F_{VT} = 0.40 \times 664,841.25\,kg = 265,936.5\,kg \]

\[F_{sd} = \frac{(265,936.5\,kg + 320,123.66\,kg)}{109,147.5\,kg} \]

\[F_{sd} = 5.37 > 1.5 \, ok \]
8. RESULTADOS

Según los estudios de suelo se comprobó en forma general que predomina superficialmente suelos gravo areno arcilloso (GC) según la clasificación SUCS no plástica hasta en profundidad de 0.46 a 0.91m, seguido se tiene una capa heterogénea de un suelo areno arcilloso (SM) de espesor variable entre los 0.46m y 2.74m. finalmente en las perforaciones realizadas se encuentra en 1.83m y 2.74m de profundidad un manto gravo arenoso compacto en el cual se propone asentar las bases del puente en cuestión.

Con las pruebas SPT de laboratorio realizada a la dos perforaciones se obtuvo la capacidad de soporte de 5.00 kg/cm²

Los estudios hidrológicos dieron como resultado dos valores de caudales según el método racional Q= 183.54 m³/s , con un tiempo de concentración de 21.55 min y una intensidad de 172mm/h y por el método de transito de avenida que será el caudal de diseño Qd= 83.20 m³/s , un tiempo de concentración de 25 min y una intensidad de 52 mm/h.

El tirante crítico según los estudios hidráulicos es de 2.08m y la velocidad de esa sección es de 3.68 m/s.

La socavación local del estribo en la parte derecha es de 3.20 m y en la parte izquierda es de 2.41 m.

En el diseño de la superestructura la losa será de 0.20m de espesor con un refuerzo de varilla # 4 y # 5, con un peso muerto de 1,060.00 Kg/m, momento ultimo de 5,246.62 Kg.m, con una carpeta asfáltica de 5cm de espesor, la acera de 0.15 m x 0.60m de largo con un peso de 235 Kg/m con un refuerzo de varilla #3 @ 25cms, # 4 @ 25 cms y # 5 @ 30cms, con camión de diseño HS-20-44, vigas W36 x 194 y diafragma W12x26, placa base de 14” x 20” x 1”, pernos de 1” x 20”, empaque de neopreno base de 35 x 50 cm y espesor de 2”, la viga de apoyo de 0.83m de ancho x 0.45m de alto x 7m de largo, el estribo por gravedad con ancho de 7m, altura de 7.5m, largo de 7.33m y cumple las tres condiciones de diseño.

El peso propio de la superestructura es 25811.85 kg

La carga muerta proveniente de la superestructura 98343.15 kg*m

La carga viva de la superestructura 15009.10kg*m

Los factores de seguridad al vuelco es de 1.70, de deslizamiento 5.37 y de presión es menor que la permitida.
9. CONCLUSIONES

El levantamiento topográfico de la zona permite conocer mejor las dimensiones de la sección transversal del cauce y dan la pauta al estudio hidráulico para conocer mejor la trayectoria que tendrá el flujo. La pendiente del cauce principal de 4.095% siendo de clasificación suave.

El área de la cuenca del cauce es de 848.6 Ha.

El caudal máximo de diseño con un periodo de retorno de 50 años es de 83.20 m3/s.

Del análisis de socavación la mayor profundidad se estimó en 3.20m en la pila derecha, esta profundidad es medida a partir del río y comparación con la profundidad de desplante se tendrá una sobre excavación de 0.85m.

Longitud del claro del puente es de 15m.

Para puentes de luces cortas (0 a 15 m) no es necesario construir pilas.

La función principal de los estribos de entrada y salida es de transmitir las cargas de la superestructura a la cimentación.

Los impactos ambientales comúnmente asociados a los proyectos son la contaminación del aire por generación del polvo, contaminación de cuerpos de agua por arrastre de sedimentos y mala disposición de excretas del personal y producción de desechos sólidos de construcción y el ruido por uso de maquinaria y equipo de construcción.

Los efectos ambientales son generalmente de carácter temporal con un área de influencia puntual o local de intensidad variable, mitigables y prevenibles con la aplicación de normas y medidas sencillas.

Los niveles proyectados y la geometría propuesta del puente son adecuados para el correcto funcionamiento de la obra y para evento máximo analizado.
10. RECOMENDACIONES

Debido a que el suelo del lecho del cauce es propenso a socavarse se recomienda construir una losa de concreto ciclópeo para la protección de los muros (únicamente debajo del puente).

Colocar el armado de acero de losa y estribo como se especifican en los planos.

Dejar bien establecidos los niveles topográficos del puente una vez construido para tener presente posibles asentamientos que puedan producirse.

La etapa de construcción debe ser supervisada por un ingeniero civil especialista en puente.

Para reducir costos en la construcción del puente carretero se recomienda que la mano de obra y los materiales de construcción sean en su mayoría locales.
11. ESPECIFICACIONES TÉCNICAS PARA LA CONSTRUCCIÓN DEL PUENTE VEHICULAR.

ART. 1 Condiciones generales:

A) Toda mención hecha en estas Especificaciones o indicada en los Planos, obliga a El Contratista a suplir e instalar cada artículo, material o equipo, con el proceso o método indicado, calidad requerida o sujeta a calificación y la mano de obra, equipos y complementarios necesarios para la terminación de la obra, Incluyese las Condiciones Generales y Condiciones Especiales.

B) Trabajo requerido:

El trabajo descrito en esta división consiste en la provisión de todo el concreto, acero de refuerzo y el acabado de las superficies expuestas del concreto, de acuerdo a los planos y a estas Especificaciones.

Las diferentes artes tendrán oportunidad suficiente para instalar sus marcos, ganchos, canalizaciones, pernos de anclaje u otros artefactos empotrados en el concreto. La ubicación de todos y cada uno de estos anclajes y artefactos deberá ser aprobada por El Inspector antes de proceder al chorreado del concreto.

ART. 2 Calidad de los materiales:

A) El Cemento

Será de una marca conocida de cemento Portland que cumpla con las Especificaciones C-150 tipo 1 de la " American Society of Testing Materials ".

El Cemento deberá llegar al sitio en sus empaques originales y enteros, almacenándose en bodegas secas sobre tarimas de madera, en estibas no mayores de diez (10) sacos. Todo cemento con evidencias de daño o endurecimiento será rechazado por El Inspector.

B) El acero de refuerzo:

Será de hierro en varillas deformadas según ASTM A-305, tipo Grado Estructural con un límite de fluencia de 40,000 libras / pulgada cuadrada, de acuerdo con las Especificaciones ASTM A-615.
Todas las varillas deben estar limpias, sin trazas de oxidación avanzada y libre de sustancias extrañas que afecten sus propiedades físicas y su adherencia al concreto.

C) Agregados:

Los agregados utilizados en la preparación del concreto deberán ser clasificados según su tamaño y almacenados en forma ordenada para evitar que se revuelvan o ensucien con sustancias extrañas. El origen y calidad de estos materiales deberá ser aprobado por El Inspector. Deberán llegar y utilizarse limpios, libres de sustancias extrañas que afecten la resistencia del concreto.

El agua a utilizarse será potable preferiblemente. La piedra triturada será graduada en diferentes tamaños, utilizándose así: la que pase por un tamiz de 1/2” para las columnas del muro.

ART. 3 Construcción de formaletas:

A) Las formaletas serán construidas de madera-tablones o de cualquier otro material que reúna las condiciones de trabajo requeridas para éstas labores.

B) Las formaletas tendrán la resistencia y rigidez necesarias para soportar el concreto, sin movimientos locales superiores a la milésima (0.001) de luz. Los apoyos estarán dispuestos de modo que en ningún momento se produzcan sobre la parte de la obra ya ejecutada, esfuerzos superiores al tercio (1/3) de los esfuerzos de diseño. Las juntas de las formaletas no dejarán rendijas de más de tres (3) milímetros para evitar pérdidas de la lechada, pero deberán dejar el huelgo necesario para evitar que por efecto de la humedad durante el fraguado se compriman y deformen los tablones.

ART. 4 Doblado y colocación del acero:

A) El acero de refuerzo se limpiará de toda suciedad u óxido no adherente. Las barras se doblarán en frío, ajustándose a los Planos y Especificaciones del proyecto, sin errores mayores de un (1) centímetro.

B) Las barras se sujetarán a la formaleta con alambre o tacos de hormigón o piedra entre sí con atadura de alambre de hierro dulce No. 16, de modo que no pueden desplazarse durante el chorreado del concreto y que éste pueda envolverlas.
completamente.

C) Salvo indicación especial en los planos, las barras quedarán separadas de la superficie del hormigón 7.50 centímetros en las paredes y en los cimientos sobre el suelo. La separación entre barras y paralelas será como mínimo, igual al diámetro o uno y un tercio (1-1/3) el diámetro del mayor agregado grueso usado en dicho elemento.

D) La posición de las barras se ajustará a lo indicado en los planos del proyecto y las instrucciones de la Inspección. Se revisará la correcta disposición del acero de refuerzo antes de proceder al chorreado del concreto y se anotarán en los planos registros de la obra, que al efecto llevará El Contratista, todas las modificaciones de barras que se introducirán autorizadas por la Inspección.

ART. 5 Empalmes del acero:

No se dispondrá sin necesidad de empalmes del acero de refuerzo no señalados en los planos sin autorización de la Inspección. En caso necesario, se dispondrán donde la armadura trabaje menos de dos tercios (2/3) de su tensión admisible pudiendo ser por solape o soldadura. El espesor del concreto alrededor del solape no bajará en dos (2) diámetros. Los empalmes con soldadura pueden hacerse con arreglo a las normas de la Americana Welding Society (AWS) para este tipo de soldadura. Los empalmes se distanciarán unos de otros de modo que sus centros queden a más de treinta (30) diámetros a lo largo de la pieza o según indicaciones en planos.

Cuando el Inspector permita el uso de esperas, el diámetro de éstas no deberá ser, bajo ningún caso, menor que el diámetro del refuerzo principal.

ART. 6 Resistencia del concreto:

A) La estructura ha sido diseñada para un hormigón que tenga una fatiga de ruptura mínima de 3,000 lb/in². De compresión a los 28 días de chorreado.

B) La proporción de los materiales para los diferentes tipos de concreto deberá llenar el Vo. Bo. del laboratorio de Materiales autorizados. La mezcla deberá ser satisfactoriamente plástica y laborable con la resistencia requerida.
ART. 7 Preparación del concreto:

A) La preparación del concreto deberá hacerse en una mezcladora mecánica con no menos de 1.5 minuto de revolución continua, una vez que todos los ingredientes hayan sido introducidos dentro de la mezcladora.

Se completará la descarga de la mezcladora dentro de un período de 30 minutos después de la introducción del agua para la mezcla de cemento y los áridos.

B) El Inspector podrá autorizar la mezcla a mano de las partes de la obra de escasa importancia, debido hacerse entonces sobre una superficie impermeable, haciéndose la mezcla en seco hasta que aparezca de aspecto uniforme y agregando después el agua en pequeñas cantidades hasta obtener un producto homogéneo y cuidando que durante la operación no se mezcle la tierra ni impureza alguna.

C) El concreto a ser vertido para relleno de los boquetes de las losas prefabricadas, es decir en los puntos donde se unirá las Vigas metálicas con las losetas deberá ser preparado con un adhesivo epóxido que garantice altas resistencias mecánicas de trabajo, preferiblemente de la línea Sika. Antes de aplicar dicho concreto se debe asegurar que las superficies estén sanas, rugosa y limpia, libre de partes sueltas, contaminación de aceites, polvos, u otras sustancias extrañas.

ART. 8 Prueba del concreto

A) Si lo dispone el Inspector, de cada fundida El Contratista sin costo alguno para El Inversionista hará hasta 3 cilindros del concreto tomados de la mezcla que el Inspector apruebe y determinará su resistencia a los veintiocho (28) días por medio de ensayos efectuados en el Laboratorio de materiales autorizado.

B) Si los resultados de la ruptura de cilindros a los veintiocho (28) días fueren defectuosos en más de un 25 %, el Inspector podrá rechazar la parte de la obra correspondiente.

C) El Inspector podrá, sin embargo, aceptar la parte de la obra defectuosa, siempre que sea factible sin peligro a su juicio, pero ejecutando una prueba previa con una sobrecarga superior a la del cálculo en un cincuenta por ciento (50 %),
comprobando que resiste en buenas condiciones.

ART. 9 Puesta en obra del concreto:

A) El transporte y chorreado del concreto se hará de modo que no se disgreguen sus elementos, volviendo a mezclarse al menos con una vuelta de pala, los que acusen señales de segregación. No se tolerará colocación de mezcla que acuse un principio de fraguado, prohibiéndose adición de agua o lechada durante la operación del chorreado del concreto.

ART. 10 Vibrado del concreto:

A) El concreto de consistencia blanda o plástica, una vez chorreado será preferentemente agitado con vibrador, accionado con motor eléctrico o de combustión, aunque se permitirá realizarlo también con barras en forma de espátulas, insistiendo en que vibre lo necesario para que el concreto penetre en todos los rincones.

B) En el concreto de consistencia plástica y seca deberá emplearse el apisonado por vibrado lo necesario para que su efecto se extienda a toda la masa sin iniciar disgregaciones locales y en capas no mayores de 20 cms. de espesor.

ART. 11 Curado del concreto:

Se cuidará de mantener continuamente húmeda la superficie del concreto, por lo menos los primeros siete (7) días después de su colocación. Se evitarán causas externas como sobrecargas o vibraciones que puedan provocar fisuras en el concreto, durante el proceso de curado del mismo.

ART. 12 Desencofrados y descimbramientos:

El retiro de formaletas y cimbras se realizara a como se indica en el cuadro siguiente:

A) No se hará ningún descimbramiento mientras el concreto no tenga una resistencia superior del triple, de la carga de trabajo producido por dicha operación. Durante estas operaciones de descimbramiento se cuidará de no dar golpes ni hacer esfuerzos sobre el concreto que puedan perjudicarle y de que el descenso o
separación de los apoyos se haga en forma que no produzcan esfuerzos anormales en algún punto que superen al tercio (1/3) de lo previsto en los cálculos.

B) Se tendrá especial cuidado en no cargar losas o vigas durante el proceso de fraguado, con almacenamiento de materiales o equipos que puedan causar deformaciones permanentes.

Vigas de asiento 3 Días
Losa de concreto 28 Días

ART. 13 Juntas de concreto:

Antes de llenar secciones adyacentes de un elemento de concreto, deberá de eliminarse del concreto existente todo el material suelto. Y se deberá de piquetear total y cuidadosamente toda la superficie eliminando una capa de 1 cm. de espesor del concreto existente, dejando una superficie áspera que deberá de limpiarse cuidadosamente.

Antes de proceder a colocar el concreto nuevo, debe humedecerse la junta y debe cubrirse con una lechada espesa de cemento inmediatamente antes del chorreado.

Mampostería

Mampostería Clase "A" para el Drenaje Menor: el mortero a utilizar para la mampostería del drenaje menor, cunetas y contra-cunetas, será de arena y cemento en las proporciones necesarias para alcanzar una resistencia a la ruptura de 70 Kg/cm², a los 28 días de edad como mínimo.

Mampostería Clase "A" para el Drenaje Mayor (Cajas y Puentes): el mortero para la mampostería de los puentes y cajas, será de arena y cemento en las proporciones para alcanzar una resistencia a la ruptura de 100 Kg/cm², a los 28 días de edad como mínimo.

ESTRUCTURA DE ACERO

ART. 1 Condiciones generales:

A) Toda mención hecha en éstas Especificaciones o indicada en los planos,
obliga a El Contratista a suplir e instalar cada artículo, material o equipo, con el proceso o método indicado, calidad requerida o sujeta a calificación y la mano de obra, equipos y complementarios necesarios para la terminación de la obra. Incluyese las Condiciones Generales y Condiciones Específicas.

B) Trabajo requerido:

El trabajo consiste en la fabricación de toda la estructura de acero incluyendo las placas, angulares y anclas de las uniones mostradas en los planos.

El Contratista será el único responsable de los errores de fabricación o de cualquier otro detalle que no esté de acuerdo con los planos o éstas Especificaciones.

El Contratista suministrará patrones para la colocación de pernos, de anclajes y esperas. Será responsable, además, de la colocación a su debido tiempo, de todos los elementos de acero que deben quedar empotrados en el concreto.

ART. 2 Normas de construcción:

Para la fabricación y erección de la estructura de acero se utilizarán las reglas y prácticas corrientes establecidas en el Código Practicas Standard para edificios y puertas de acero, y las Especificaciones para "Diseño fabricación y erección de acero estructural para edificios, del instituto Americano de Construcción del Acero", salvo que en los planos se especifique otros métodos.

ART. 3 Materiales:

A) Acero estructural: El acero estructural deberá cumplir las Especificaciones ASTM-A36 para el formado en caliente y ASTM-A570 grado B para el formado en frío.

B) Los pernos de anclaje con sus tuercas y arandelas serán también de calidad aprobada por El Inspector, si no se indica otra calidad, deberán cumplir con la designación ASTM-A307.

C) Todos los elementos de la estructura de acero llegarán a la obra, limpios, libres de materias extrañas, golpes y con una mano de pintura anticorrosiva a base de plomo. Una vez erigida la estructura, se le aplicará otra mano de pintura
anticorrosiva a prueba de óxido, previo retoque de las partes soldadas o rayadas.

ART. 4 Soldadura y cortes:

A) El Contratista deberá someter a la aprobación de El Inspector un detalle completo de los tipos y métodos de soldadura y cortes a utilizar en los trabajos. Igualmente se someterán a aprobación los electrodos a usarse.

B) Si surgiere alguna duda sobre la eficiencia de la soldadura, El Inspector podrá ordenar pruebas de trepanación de soldadura. Si las pruebas resultaren deficientes, se probarán todas las demás soldaduras. Las soldaduras defectuosas serán cortadas todas o parcialmente, según el criterio del Inspector y soldadas de nuevo.

C) Si no se indica otro procedimiento, todos los trabajos de soldadura, diseño de conexiones, electrodos, mano de obra, etc., deberán cumplir con las normas aplicables del American Welding Highway and Rail Road Bridges. Los Electrodos a usarse serán de las series E-70 grado SA-1 para proceso de arco sumergido.

Los ensambles serán precisos y concordantes. La soldadura pareja, uniforme y pulida, sin menoscabar el espesor especificado de la soldadura.

ART. 5 Proceso de fabricación:

A) Requisitos de fabricación:

- Los trabajos de estructura de acero consistentes en el suministro, instalación y pintura de todo el acero estructural, anclajes y artículos misceláneos relacionados con el mismo, necesarios para completar todo el trabajo indicado en los planos y descritos en éstas Especificaciones.

- Estos trabajos incluyen la preparación de Cronogramas de fabricación e instalación, planos de taller y la debida coordinación, con las otras artes.

B) Planos y fabricación:

- Los planos de fabricación para todo el trabajo incluido en ésta sección serán preparados por El Contratista de la estructura de acero y presentada, en tres copias, al Inspector para su revisión y aprobación, antes de iniciar los trabajos.
- Los planos de fabricación deberán incluir información concerniente a la fabricación de todas las partes que componen la estructura. Se indicarán el tamaño y peso de los elementos, tipo y localización de los elementos, conexiones en fábrica y en el campo, tipo y extensión de soldaduras y en los casos que sea requerido la secuencia de soldar.

Se revisará y aprobará además el tamaño y disposición de los elementos principales y auxiliares, y la resistencia de las conexiones.

Cualquier error en las dimensiones indicadas en los planos de fabricación será responsabilidad del Contratista.

Será responsabilidad del Contratista la aclaración oportuna y la solución de cualquier incongruencia u omisión de detalles de unión mostrados en los planos estructurales, para lo cual deberá presentar planos de taller y aprobados por El Supervisor o El Dueño.

C) Mano de obra:

La mano de obra deberá ser calificada y de experiencia reconocida en el ramo. Los equipos y accesorios de trabajo serán los requeridos y necesarios para estos trabajos.

ART. 9 Pintura:

A) Una vez inspeccionado y aprobado el material y antes de ser retirado del taller de fabricación, se limpiará el acero de adherencias, sarro, salpicaduras, depósitos y residuos de soldadura, aceite, suciedad y otras materias extrañas. Se aplicará una mano de pintura roja a base de plomo a toda la superficie de acero, a excepción de las superficies que serán recubiertas con hormigón, las superficies acabadas a máquina y los cantos y superficies adyacentes a las áreas que se soldarán en sitio. Las superficies deberán estar secas cuando se aplique la pintura. Las superficies acabadas a máquina se protegerán de la corrosión con una pintura apropiada. Se removerá la pintura de las superficies que deberán ser soldadas en una distancia de cinco (5) centímetros de ambos lados de la unión.
B) Pintura en sitio: Después de la erección, retoque con el mismo tipo de pintura usado para la primera mano, las conexiones hechas en el sitio y las secciones golpeadas y rayadas. A continuación todas las superficies deberán ser pintadas de acuerdo a lo indicado en la División "Pintura" a excepción de las superficies en contacto con aluminio. Estas superficies se pintarán con dos capas de Sika Seal, manufacturada por "Sika Chemical Corp", o un producto equivalente.

ART. 10 Inspección:

Todo el proceso de fabricación y erección de la estructura metálica estará sujeto a la Inspección en fábrica, taller y en el sitio, de parte del Inspector o de representantes calificados nombrados por él o por El Inversionista.

La inspección no relevará a El contratista de sus responsabilidades en la fabricación y erección de la estructura de acero, de acuerdo a los requisitos del Contrato.
12. **BIBLIOGRAFÍA**

- Comisión nacional del medio ambiente de la presidencia de la república de Guatemala. Instructivo de procedimiento para las evaluaciones de impacto ambiental. Capítulo 2.
- Ministerio del ambiente y recursos naturales MARENA. Curso de evaluación de impacto ambiental. Bluefields, Nicaragua.
- Mecánica de suelo, editorial pueblo y educación

Web grafía

13. **ANEXOS**

MAPA Nº 5. CASCO URBANO DEL MUNICIPIO DE SANTO TOMAS. Fuente: Alcaldía

MAPA No. 8. USO ACTUAL DEL SUELO. Fuente: Alcaldía municipal

Ilustración 57. Medición de la longitud del río a cada 10m. Fuente: Elaboración propia, Noviembre 2012.

Resultado de los muestra de suelos.

Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Fecha: -------25 /may/2012-------
Perforación: № 1
Muestra: № 1
Profundidad (pies): 0 a 3

Composición Granulométrica del material retenido en la malla № 4

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/4”</td>
<td>52.6</td>
<td>11.9</td>
<td>11.9</td>
<td>88.1</td>
</tr>
<tr>
<td>1/2”</td>
<td>49.5</td>
<td>11.2</td>
<td>23.1</td>
<td>76.9</td>
</tr>
<tr>
<td>3/8”</td>
<td>48.4</td>
<td>11.0</td>
<td>34.0</td>
<td>66.0</td>
</tr>
<tr>
<td>1/4”</td>
<td>0</td>
<td>0.0</td>
<td>34.0</td>
<td>66.0</td>
</tr>
<tr>
<td>№ 4</td>
<td>77.5</td>
<td>17.5</td>
<td>51.6</td>
<td>48.4</td>
</tr>
<tr>
<td>Pasa la № 4</td>
<td>214.0</td>
<td>48.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>442.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla №</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido Parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21.2</td>
<td>16.7</td>
<td>16.7</td>
<td>31.8</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>16.7</td>
<td>31.8</td>
</tr>
<tr>
<td>40</td>
<td>14.7</td>
<td>11.6</td>
<td>28.2</td>
<td>20.2</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0.0</td>
<td>28.2</td>
<td>20.2</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0</td>
<td>28.2</td>
<td>20.2</td>
</tr>
<tr>
<td>200</td>
<td>7.7</td>
<td>6.1</td>
<td>34.3</td>
<td>14.1</td>
</tr>
<tr>
<td>Pasa :№ 200</td>
<td>18</td>
<td>14.1</td>
<td>48.4</td>
<td>0.0</td>
</tr>
<tr>
<td>suma</td>
<td>61.6</td>
<td>48.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>V-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco (grs)</td>
<td>1</td>
</tr>
<tr>
<td>Peso seco lavado (grs)</td>
<td>2</td>
</tr>
<tr>
<td>Diferencias (grs)</td>
<td>4</td>
</tr>
<tr>
<td>Pasa Nº 200 (grs)</td>
<td>3</td>
</tr>
<tr>
<td>Suma</td>
<td>5</td>
</tr>
<tr>
<td>Suma (3)+(4) = (5)</td>
<td>18</td>
</tr>
</tbody>
</table>

Ingeniería Civil
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo
Perforación: Nº 1
Fecha: ---------25/may/2012------
Muestra: Nº 1
Profundidad (pies): 0 a 3

LÍMITE LÍQUIDO

<table>
<thead>
<tr>
<th>Nº de Golpes N</th>
<th>25</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipiente Nº</td>
<td>T-1</td>
<td>T-2</td>
</tr>
<tr>
<td>PW + Recipiente (1)</td>
<td>36.40</td>
<td>32.45</td>
</tr>
<tr>
<td>PS + Recipiente (2)</td>
<td>33.20</td>
<td>26.91</td>
</tr>
<tr>
<td>Agua = (1)-(2) (3)</td>
<td>3.2</td>
<td>3.54</td>
</tr>
<tr>
<td>Peso de recipiente (4)</td>
<td>21.5</td>
<td>16.5</td>
</tr>
<tr>
<td>PS=(2)-(4) (5)</td>
<td>11.7</td>
<td>12.45</td>
</tr>
<tr>
<td>% de Agua = (3)/(5)*100 (6)</td>
<td>27.35%</td>
<td>28.53%</td>
</tr>
<tr>
<td>Factor K</td>
<td>1</td>
<td>0.985</td>
</tr>
<tr>
<td>Límite Líquido = (6)*K (7)</td>
<td>27.35%</td>
<td>28.10%</td>
</tr>
</tbody>
</table>

FACTORES K

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.895</td>
</tr>
<tr>
<td>11</td>
<td>0.906</td>
</tr>
<tr>
<td>12</td>
<td>0.915</td>
</tr>
<tr>
<td>13</td>
<td>0.924</td>
</tr>
<tr>
<td>14</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.940</td>
</tr>
<tr>
<td>16</td>
<td>0.947</td>
</tr>
<tr>
<td>17</td>
<td>0.954</td>
</tr>
<tr>
<td>18</td>
<td>0.961</td>
</tr>
<tr>
<td>19</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.973</td>
</tr>
<tr>
<td>21</td>
<td>0.979</td>
</tr>
<tr>
<td>22</td>
<td>0.985</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>29</td>
<td>1.018</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
</tr>
<tr>
<td>31</td>
<td>1.026</td>
</tr>
<tr>
<td>32</td>
<td>1.030</td>
</tr>
<tr>
<td>33</td>
<td>1.034</td>
</tr>
<tr>
<td>34</td>
<td>1.038</td>
</tr>
<tr>
<td>35</td>
<td>1.042</td>
</tr>
<tr>
<td>36</td>
<td>1.045</td>
</tr>
<tr>
<td>37</td>
<td>1.048</td>
</tr>
<tr>
<td>38</td>
<td>1.051</td>
</tr>
<tr>
<td>39</td>
<td>1.054</td>
</tr>
</tbody>
</table>

LÍMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Recipiente Nº</th>
<th>T-3</th>
<th>T-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW + Recipiente (8)</td>
<td>37.60</td>
<td>27.40</td>
</tr>
<tr>
<td>PS + Recipiente (9)</td>
<td>34.40</td>
<td>25.20</td>
</tr>
<tr>
<td>Agua = (8)-(9) (10)</td>
<td>3.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Peso de recipiente (11)</td>
<td>21.4</td>
<td>16.2</td>
</tr>
<tr>
<td>PS=(9)-(11) (12)</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Límite Plástico (10)/(12)*100 (13)</td>
<td>24.62%</td>
<td>24.44%</td>
</tr>
</tbody>
</table>

RESULTADOS

Límite Líquido %	27.7 %
Límite Plástico %	24.5 %
Índice de Plasticidad	3.2 %
Cont. Lineal	
Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Perforación: Nº 1
Fecha: -----25/may/2012------
Muestra: Nº 2
Profundidad (pies): 3 a 6

Composición Granulométrica del material retenido en la malla Nº 4

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>59</td>
<td>5.4</td>
<td>5.4</td>
<td>94.6</td>
</tr>
<tr>
<td>1/2"</td>
<td>78</td>
<td>7.1</td>
<td>12.5</td>
<td>87.5</td>
</tr>
<tr>
<td>3/8"</td>
<td>92</td>
<td>8.4</td>
<td>20.9</td>
<td>79.1</td>
</tr>
<tr>
<td>1/4"</td>
<td>0</td>
<td>0.0</td>
<td>20.9</td>
<td>79.1</td>
</tr>
<tr>
<td>Nº 4</td>
<td>142</td>
<td>13.0</td>
<td>33.9</td>
<td>66.1</td>
</tr>
<tr>
<td>Pasa la Nº 4</td>
<td>723.0</td>
<td>66.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>1094.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla Nº</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>18</td>
<td>14.5</td>
<td>14.5</td>
<td>51.6</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>14.5</td>
<td>51.6</td>
</tr>
<tr>
<td>40</td>
<td>22.3</td>
<td>17.9</td>
<td>32.4</td>
<td>33.7</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0.0</td>
<td>32.4</td>
<td>33.7</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0</td>
<td>32.4</td>
<td>33.7</td>
</tr>
<tr>
<td>200</td>
<td>19.3</td>
<td>15.5</td>
<td>47.9</td>
<td>18.2</td>
</tr>
<tr>
<td>Pasa la Nº 200</td>
<td>22.6</td>
<td>18.2</td>
<td>66.1</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>82.2</td>
<td>66.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>V-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco (grs)</td>
<td>(1)</td>
</tr>
<tr>
<td>Peso seco lavado (grs)</td>
<td>(2)</td>
</tr>
<tr>
<td>Diferencias (grs)</td>
<td>(1)-(2)=(3)</td>
</tr>
<tr>
<td>Pasa Nº 200 (grs)</td>
<td>(4)</td>
</tr>
<tr>
<td>Suma</td>
<td>(3)+(4)=(5)</td>
</tr>
</tbody>
</table>
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo Perforación: Nº 1
Fecha: -----25/may/2012------ Muestra: Nº 2
Profundidad (pies): ___ 3 a 6

LÍMITE LÍQUIDO

<table>
<thead>
<tr>
<th>Nº de Golpes N</th>
<th>Recipiente Nº</th>
<th>PW + Recipiente</th>
<th>PS + Recipiente</th>
<th>Agua = (1)-(2)</th>
<th>Peso de recipiente</th>
<th>PS = (2)-(4)</th>
<th>% de Agua = (3)/(5)*100</th>
<th>Factor K</th>
<th>Límite Líquido = (6)*K</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>T-5</td>
<td>41.92</td>
<td>38.75</td>
<td>3.17</td>
<td>28</td>
<td>10.75</td>
<td>29.49%</td>
<td>0.961</td>
<td>28.34%</td>
</tr>
<tr>
<td>23</td>
<td>T-6</td>
<td>45.82</td>
<td>43.13</td>
<td>2.69</td>
<td>33.4</td>
<td>9.73</td>
<td>27.65%</td>
<td>0.99</td>
<td>27.37%</td>
</tr>
</tbody>
</table>

LÍMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Recipiente Nº</th>
<th>T-7</th>
<th>T-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW + Recipiente</td>
<td>41.25</td>
<td>31.23</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>37.45</td>
<td>26.14</td>
</tr>
<tr>
<td>Agua = (8)-(9)</td>
<td>3.8</td>
<td>3.09</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>21.6</td>
<td>15.35</td>
</tr>
<tr>
<td>PS = (9)-(11)</td>
<td>15.85</td>
<td>12.79</td>
</tr>
<tr>
<td>Límite Plástico = (10)/(12)*100</td>
<td>23.97%</td>
<td>24.16%</td>
</tr>
</tbody>
</table>

RESULTADOS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite Líquido %</td>
<td>27.9 %</td>
</tr>
<tr>
<td>Límite Plástico %</td>
<td>24.1 %</td>
</tr>
<tr>
<td>Índice de Plasticidad</td>
<td>3.8 %</td>
</tr>
<tr>
<td>Cont. Lineal</td>
<td></td>
</tr>
</tbody>
</table>

FACTORES K

<table>
<thead>
<tr>
<th>Nº</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.895</td>
</tr>
<tr>
<td>11</td>
<td>0.906</td>
</tr>
<tr>
<td>12</td>
<td>0.915</td>
</tr>
<tr>
<td>13</td>
<td>0.924</td>
</tr>
<tr>
<td>14</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.940</td>
</tr>
<tr>
<td>16</td>
<td>0.947</td>
</tr>
<tr>
<td>17</td>
<td>0.954</td>
</tr>
<tr>
<td>18</td>
<td>0.961</td>
</tr>
<tr>
<td>19</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.973</td>
</tr>
<tr>
<td>21</td>
<td>0.979</td>
</tr>
<tr>
<td>22</td>
<td>0.985</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>29</td>
<td>1.018</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
</tr>
<tr>
<td>31</td>
<td>1.026</td>
</tr>
<tr>
<td>32</td>
<td>1.030</td>
</tr>
<tr>
<td>33</td>
<td>1.034</td>
</tr>
<tr>
<td>34</td>
<td>1.038</td>
</tr>
<tr>
<td>35</td>
<td>1.042</td>
</tr>
<tr>
<td>36</td>
<td>1.045</td>
</tr>
<tr>
<td>37</td>
<td>1.048</td>
</tr>
<tr>
<td>38</td>
<td>1.051</td>
</tr>
<tr>
<td>39</td>
<td>1.054</td>
</tr>
</tbody>
</table>
Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Fecha: -----25/may/2012----------
Perforación: Nº 1
Muestra: Nº 3
Profundidad (pies): ___ 6 a 9

Composición Granulométrica del material retenido en la malla Nº 4

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/4”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1/2”</td>
<td>24</td>
<td>6.1</td>
<td>6.1</td>
<td>93.9</td>
</tr>
<tr>
<td>3/8”</td>
<td>64</td>
<td>16.3</td>
<td>22.4</td>
<td>77.6</td>
</tr>
<tr>
<td>1/4”</td>
<td>0</td>
<td>0.0</td>
<td>22.4</td>
<td>77.6</td>
</tr>
<tr>
<td>Nº 4</td>
<td>122</td>
<td>31.0</td>
<td>53.4</td>
<td>46.6</td>
</tr>
<tr>
<td>Pasa la Nº 4</td>
<td>183.0</td>
<td>46.6</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>393.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla Nº</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.8</td>
<td>8.6</td>
<td>8.6</td>
<td>38.0</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>8.6</td>
<td>38.0</td>
</tr>
<tr>
<td>40</td>
<td>8.3</td>
<td>10.5</td>
<td>19.1</td>
<td>27.5</td>
</tr>
<tr>
<td>60</td>
<td>0.0</td>
<td>0.0</td>
<td>19.1</td>
<td>27.5</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
<td>0.0</td>
<td>19.1</td>
<td>27.5</td>
</tr>
<tr>
<td>200</td>
<td>6.4</td>
<td>8.1</td>
<td>27.2</td>
<td>19.4</td>
</tr>
<tr>
<td>Pasa la Nº 200</td>
<td>15.3</td>
<td>19.4</td>
<td>46.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Suma</td>
<td>36.8</td>
<td>46.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>Peso seco (grs) (1)</th>
<th>36.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso seco lavado (grs) (2)</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>Diferencias (grs) (1)-(2) (3)</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>Pasa Nº 200 (grs) (4)</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>Suma (3)+(4) = (5)</td>
<td>15.3</td>
</tr>
</tbody>
</table>
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo
Fecha: ---25/may/2012------
Perforación: Nº 1
Muestra: Nº 3
Profundidad (pies): 6 a 9

LIMITE LÍQUIDO

<table>
<thead>
<tr>
<th>Nº de Golpes N</th>
<th>Recipiente Nº</th>
<th>PW + Recipiente (1)</th>
<th>PS + Recipiente (2)</th>
<th>Agua = (1)-(2) (3)</th>
<th>Peso de recipiente (4)</th>
<th>PS=(2)-(4) (5)</th>
<th>% de Agua = (3)/(5)*100 (6)</th>
<th>Factor K</th>
<th>Límite Líquido=(6)*K (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recipiente Nº</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>28.9</td>
<td>-28.9</td>
<td>0.00%</td>
<td>0.895</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

LIMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Recipiente Nº</th>
<th>T-11</th>
<th>T-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW + Recipiente (8)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PS + Recipiente (9)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Agua = (8)-(9) (10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peso de recipiente (11)</td>
<td>27.4</td>
<td>27.2</td>
</tr>
<tr>
<td>PS=(9)-(11) (12)</td>
<td>-27.4</td>
<td>-27.2</td>
</tr>
<tr>
<td>Límite Plástico (10)/(12)*100 (13)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

FACTORES K

<table>
<thead>
<tr>
<th>Nº</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.895</td>
</tr>
<tr>
<td>11</td>
<td>0.906</td>
</tr>
<tr>
<td>12</td>
<td>0.915</td>
</tr>
<tr>
<td>13</td>
<td>0.924</td>
</tr>
<tr>
<td>14</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.940</td>
</tr>
<tr>
<td>16</td>
<td>0.947</td>
</tr>
<tr>
<td>17</td>
<td>0.954</td>
</tr>
<tr>
<td>18</td>
<td>0.961</td>
</tr>
<tr>
<td>19</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.973</td>
</tr>
<tr>
<td>21</td>
<td>0.979</td>
</tr>
<tr>
<td>22</td>
<td>0.985</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>29</td>
<td>1.018</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
</tr>
<tr>
<td>31</td>
<td>1.026</td>
</tr>
<tr>
<td>32</td>
<td>1.030</td>
</tr>
<tr>
<td>33</td>
<td>1.034</td>
</tr>
<tr>
<td>34</td>
<td>1.038</td>
</tr>
<tr>
<td>35</td>
<td>1.042</td>
</tr>
<tr>
<td>36</td>
<td>1.045</td>
</tr>
<tr>
<td>37</td>
<td>1.048</td>
</tr>
<tr>
<td>38</td>
<td>1.051</td>
</tr>
<tr>
<td>39</td>
<td>1.054</td>
</tr>
</tbody>
</table>

RESULTADOS

Límite Líquido %	0.0%
Límite Plástico %	0.0 %
Índice de Plasticidad	0.0 %
Cont. Lineal	
Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Perforación: Nº 2
Fecha: 25/may/2012
Muestra: Nº 4
Profundidad (pies): 0 a 1.5

Composición Granulométrica del material retenido en la malla Nº 4

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½”</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1”</td>
<td>50</td>
<td>9.2</td>
<td>9.2</td>
<td>90.8</td>
</tr>
<tr>
<td>3/4”</td>
<td>0</td>
<td>0.0</td>
<td>9.2</td>
<td>90.8</td>
</tr>
<tr>
<td>1/2”</td>
<td>37.5</td>
<td>6.9</td>
<td>16.1</td>
<td>83.9</td>
</tr>
<tr>
<td>3/8”</td>
<td>25</td>
<td>4.6</td>
<td>20.7</td>
<td>79.3</td>
</tr>
<tr>
<td>1/4”</td>
<td>0</td>
<td>0.0</td>
<td>20.7</td>
<td>79.3</td>
</tr>
<tr>
<td>Nº 4</td>
<td>186</td>
<td>34.2</td>
<td>54.9</td>
<td>45.1</td>
</tr>
<tr>
<td>Pasa la Nº 4</td>
<td>245.0</td>
<td>45.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>543.5</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla Nº</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>9.0</td>
<td>9.0</td>
<td>36.1</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.0</td>
<td>9.0</td>
<td>36.1</td>
</tr>
<tr>
<td>40</td>
<td>48.5</td>
<td>21.9</td>
<td>30.9</td>
<td>14.2</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>0.0</td>
<td>30.9</td>
<td>14.2</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.0</td>
<td>30.9</td>
<td>14.2</td>
</tr>
<tr>
<td>200</td>
<td>21.1</td>
<td>9.5</td>
<td>40.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Pasa la Nº 200</td>
<td>10.4</td>
<td>4.7</td>
<td>45.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Suma</td>
<td>100</td>
<td>45.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>V-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco (grs)</td>
<td>(1) 100</td>
</tr>
<tr>
<td>Peso seco lavado (grs)</td>
<td>(2) 89.6</td>
</tr>
<tr>
<td>Diferencias (grs)</td>
<td>(1)-(2)=(3) 10.4</td>
</tr>
<tr>
<td>Pasa Nº 200 (grs)</td>
<td>(4)</td>
</tr>
<tr>
<td>Suma</td>
<td>(3)+(4)=(5) 10.4</td>
</tr>
</tbody>
</table>
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo
Fecha: -----25/may/2012-------
Perforación: Nº 2
Muestra: Nº 4
Profundidad (pies): 0a 1.5

LIMITES LÍQUIDO

<table>
<thead>
<tr>
<th>N° de Golpes N</th>
<th>Recipiente Nº</th>
<th>PW + Recipiente</th>
<th>PS + Recipiente</th>
<th>Agua = (1)-(2)</th>
<th>Peso de recipiente</th>
<th>PS = (2)-(4)</th>
<th>% de Agua = (3)/(5)*100</th>
<th>Factor K</th>
<th>Limite Líquido = (6)*K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>T-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>15</td>
<td>-15</td>
<td>0.00%</td>
<td>0.895</td>
<td>0.00%</td>
</tr>
<tr>
<td>10</td>
<td>T-2</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>14.6</td>
<td>-14.6</td>
<td>0.00%</td>
<td>0.895</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

FACTORES K

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.895</td>
</tr>
<tr>
<td>11</td>
<td>0.906</td>
</tr>
<tr>
<td>12</td>
<td>0.915</td>
</tr>
<tr>
<td>13</td>
<td>0.924</td>
</tr>
<tr>
<td>14</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.940</td>
</tr>
<tr>
<td>16</td>
<td>0.947</td>
</tr>
<tr>
<td>17</td>
<td>0.954</td>
</tr>
<tr>
<td>18</td>
<td>0.961</td>
</tr>
<tr>
<td>19</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.973</td>
</tr>
<tr>
<td>21</td>
<td>0.979</td>
</tr>
<tr>
<td>22</td>
<td>0.985</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>29</td>
<td>1.018</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
</tr>
<tr>
<td>31</td>
<td>1.026</td>
</tr>
<tr>
<td>32</td>
<td>1.030</td>
</tr>
<tr>
<td>33</td>
<td>1.034</td>
</tr>
<tr>
<td>34</td>
<td>1.038</td>
</tr>
<tr>
<td>35</td>
<td>1.042</td>
</tr>
<tr>
<td>36</td>
<td>1.045</td>
</tr>
<tr>
<td>37</td>
<td>1.048</td>
</tr>
<tr>
<td>38</td>
<td>1.051</td>
</tr>
<tr>
<td>39</td>
<td>1.054</td>
</tr>
</tbody>
</table>

LIMITES PLÁSTICO

<table>
<thead>
<tr>
<th>Recipiente Nº</th>
<th>T-3</th>
<th>T-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW + Recipiente</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Agua = (8)-(9)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>15.9</td>
<td>14.9</td>
</tr>
<tr>
<td>PS = (9)-(11)</td>
<td>-15.9</td>
<td>-14.9</td>
</tr>
<tr>
<td>Limite Plástico (10)/(12)*100</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

RESULTADOS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Limite Líquido %</td>
<td>0.0%</td>
</tr>
<tr>
<td>Limite Plástico %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Índice de Plasticidad</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Cont. Lineal</td>
<td></td>
</tr>
</tbody>
</table>

Sánchez, Villahos, Gaitán

Ingeniería Civil
Página 200
Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Perforación: Nº 2

Fecha: ----25/may/2012------
Muestra: Nº 5

Profundidad (pies): ___1.5 a 6

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>103</td>
<td>11.0</td>
<td>11.0</td>
<td>89.0</td>
</tr>
<tr>
<td>1/2"</td>
<td>56</td>
<td>6.0</td>
<td>17.0</td>
<td>83.0</td>
</tr>
<tr>
<td>3/8"</td>
<td>52</td>
<td>5.6</td>
<td>22.5</td>
<td>77.5</td>
</tr>
<tr>
<td>1/4"</td>
<td>0</td>
<td>0.0</td>
<td>22.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Nº 4</td>
<td>123</td>
<td>13.1</td>
<td>35.7</td>
<td>64.3</td>
</tr>
<tr>
<td>Pasa la Nº 4</td>
<td>602.0</td>
<td>64.3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>936.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla Nº</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>13.1</td>
<td>13.1</td>
<td>51.2</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>13.1</td>
<td>51.2</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>28.2</td>
<td>41.3</td>
<td>23.1</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0.0</td>
<td>41.3</td>
<td>23.1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0</td>
<td>41.3</td>
<td>23.1</td>
</tr>
<tr>
<td>200</td>
<td>18.8</td>
<td>12.3</td>
<td>53.6</td>
<td>10.7</td>
</tr>
<tr>
<td>Pasa la Nº 200</td>
<td>16.4</td>
<td>10.7</td>
<td>64.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Suma</td>
<td>98.2</td>
<td>64.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>V-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco (grs)</td>
<td>(1)</td>
</tr>
<tr>
<td>Peso seco lavado (grs)</td>
<td>(2)</td>
</tr>
<tr>
<td>Diferencias (grs)</td>
<td>(1)-(2)=(3)</td>
</tr>
<tr>
<td>Pasa Nº 200 (grs)</td>
<td>(4)</td>
</tr>
<tr>
<td>Suma</td>
<td>(3)+(4)=(5)</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
</tr>
</tbody>
</table>
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo
Fecha: ---25/may/2012-----
Perforación: Nº 2
Muestra: Nº 5
Profundidad (pies): 1.5 a 6

<table>
<thead>
<tr>
<th>LÍMITE LÍQUIDO</th>
<th>FACTORES K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de Golpes N</td>
<td>16 20</td>
</tr>
<tr>
<td>Recipiente Nº</td>
<td>T-5 T-6</td>
</tr>
<tr>
<td>PW + Recipiente</td>
<td>(1) 40.10 45.30</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>(2) 37.50 42.80</td>
</tr>
<tr>
<td>Agua = (1)-(2)</td>
<td>(3) 2.5</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>(4) 28 33.4</td>
</tr>
<tr>
<td>PS = (2)-(4)</td>
<td>(5) 9.5</td>
</tr>
<tr>
<td>% de Agua = (3)/(5)*100</td>
<td>(6) 27.37% 26.6%</td>
</tr>
<tr>
<td>Factor K</td>
<td>0.947 0.973</td>
</tr>
<tr>
<td>Límite Líquido = (6)*K</td>
<td>(7) 25.92% 25.88%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LÍMITE PLÁSTICO</th>
<th>FACTORES K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipiente Nº</td>
<td>T-7 T-8</td>
</tr>
<tr>
<td>PW + Recipiente</td>
<td>(8) 40.30 29.32</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>(9) 36.90 26.79</td>
</tr>
<tr>
<td>Agua = (8)-(9)</td>
<td>(10) 3.4</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>(11) 21.6 15.35</td>
</tr>
<tr>
<td>PS = (9)-(11)</td>
<td>(12) 15.3</td>
</tr>
<tr>
<td>Límite Plástico = (10)/(12)*100</td>
<td>(13) 22.22% 22.12%</td>
</tr>
</tbody>
</table>

RESULTADOS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite Líquido %</td>
<td>25.9%</td>
</tr>
<tr>
<td>Límite Plástico %</td>
<td>22.2%</td>
</tr>
<tr>
<td>Índice de Plasticidad</td>
<td>3.7%</td>
</tr>
<tr>
<td>Cont. Lineal</td>
<td></td>
</tr>
</tbody>
</table>
Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Perforación: Nº 2
Fecha: ---25/may/2012-----
Muestra: Nº 6
Profundidad (pies): 6 a 9

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1/2"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/8"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1/4"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Nº 4</td>
<td>30</td>
<td>27.8</td>
<td>27.8</td>
<td>72.8</td>
</tr>
<tr>
<td>Pasa la Nº 4</td>
<td>78.0</td>
<td>72.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>108.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla Nº</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>5.6</td>
<td>5.6</td>
<td>66.6</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.0</td>
<td>5.6</td>
<td>66.6</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
<td>15.0</td>
<td>20.6</td>
<td>51.6</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0.0</td>
<td>20.6</td>
<td>51.6</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.0</td>
<td>20.6</td>
<td>51.6</td>
</tr>
<tr>
<td>200</td>
<td>14</td>
<td>13.1</td>
<td>33.8</td>
<td>38.5</td>
</tr>
<tr>
<td>Pasa la Nº 200</td>
<td>41</td>
<td>38.5</td>
<td>72.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Suma</td>
<td>77</td>
<td>72.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>V-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco (grs)</td>
<td>(1) 77</td>
</tr>
<tr>
<td>Peso seco lavado (grs)</td>
<td>(2) 36</td>
</tr>
<tr>
<td>Diferencias (grs)</td>
<td>(1)-(2)=(3) 41</td>
</tr>
<tr>
<td>Pasa Nº 200 (grs)</td>
<td>(4)</td>
</tr>
<tr>
<td>Suma</td>
<td>(3)+(4)=(5) 41</td>
</tr>
</tbody>
</table>
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo
Perforación: Nº 2
Fecha: --25/may/2012-----
Muestra: Nº 6
Profundidad (pies): 6 a 9

LIMITE LÍQUIDO

<table>
<thead>
<tr>
<th>Nº de Golpes N</th>
<th>Recipiente Nº</th>
<th>PW + Recipiente</th>
<th>PS + Recipiente</th>
<th>Agua = (1)-(2)</th>
<th>Peso de recipiente</th>
<th>PS = (2)-(4)</th>
<th>% de Agua = (3)/(5)*100</th>
<th>Factor K</th>
<th>Límite Líquido = (6)*K</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>T-9</td>
<td>45.20</td>
<td>41.00</td>
<td>4.2</td>
<td>28.9</td>
<td>12.1</td>
<td>34.71%</td>
<td>0.973</td>
<td>33.77%</td>
</tr>
<tr>
<td>25</td>
<td>T-10</td>
<td>34.40</td>
<td>31.40</td>
<td>2.9</td>
<td>22.1</td>
<td>9.3</td>
<td>31.18%</td>
<td>1</td>
<td>31.18%</td>
</tr>
</tbody>
</table>

LIMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Recipiente Nº</th>
<th>T-11</th>
<th>T-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW + Recipiente</td>
<td>43.00</td>
<td>39.90</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>40.00</td>
<td>37.60</td>
</tr>
<tr>
<td>Agua = (8)-(9)</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>27.4</td>
<td>27.2</td>
</tr>
<tr>
<td>PS = (9)-(11)</td>
<td>12.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Límite Plástico (10)/(12)*100</td>
<td>23.81%</td>
<td>22.12%</td>
</tr>
</tbody>
</table>

FACTORES K

<table>
<thead>
<tr>
<th>Nº</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.895</td>
</tr>
<tr>
<td>11</td>
<td>0.906</td>
</tr>
<tr>
<td>12</td>
<td>0.915</td>
</tr>
<tr>
<td>13</td>
<td>0.924</td>
</tr>
<tr>
<td>14</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.940</td>
</tr>
<tr>
<td>16</td>
<td>0.947</td>
</tr>
<tr>
<td>17</td>
<td>0.954</td>
</tr>
<tr>
<td>18</td>
<td>0.961</td>
</tr>
<tr>
<td>19</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.973</td>
</tr>
<tr>
<td>21</td>
<td>0.979</td>
</tr>
<tr>
<td>22</td>
<td>0.985</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>29</td>
<td>1.018</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
</tr>
<tr>
<td>31</td>
<td>1.026</td>
</tr>
<tr>
<td>32</td>
<td>1.030</td>
</tr>
<tr>
<td>33</td>
<td>1.034</td>
</tr>
<tr>
<td>34</td>
<td>1.038</td>
</tr>
<tr>
<td>35</td>
<td>1.042</td>
</tr>
<tr>
<td>36</td>
<td>1.045</td>
</tr>
<tr>
<td>37</td>
<td>1.048</td>
</tr>
<tr>
<td>38</td>
<td>1.051</td>
</tr>
<tr>
<td>39</td>
<td>1.054</td>
</tr>
</tbody>
</table>

RESULTADOS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite Líquido %</td>
<td>32.5%</td>
</tr>
<tr>
<td>Límite Plástico %</td>
<td>23.0%</td>
</tr>
<tr>
<td>Índice de Plasticidad</td>
<td>9.5%</td>
</tr>
</tbody>
</table>
Determinación de composición de granulometría

Proyecto: Puente Paso Hondo
Fecha: ----25/may/2012-----
Perforación: Nº 2
Muestra: Nº 7
Profundidad (pies): __9 a 12

Composición Granulométrica del material retenido en la malla Nº 4

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1 ½"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>24</td>
<td>5.2</td>
<td>5.2</td>
<td>94.8</td>
</tr>
<tr>
<td>1/2"</td>
<td>48</td>
<td>10.3</td>
<td>15.5</td>
<td>84.5</td>
</tr>
<tr>
<td>3/8"</td>
<td>53</td>
<td>11.4</td>
<td>26.9</td>
<td>73.1</td>
</tr>
<tr>
<td>1/4"</td>
<td>0</td>
<td>0.0</td>
<td>26.9</td>
<td>73.1</td>
</tr>
<tr>
<td>Nº 4</td>
<td>112</td>
<td>24.1</td>
<td>51.0</td>
<td>49.0</td>
</tr>
<tr>
<td>Pasa la Nº 4</td>
<td>228.0</td>
<td>49.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>465.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composición Granulométrica del Material Tamizado por la malla (por lavado)

<table>
<thead>
<tr>
<th>Malla Nº</th>
<th>Peso Retenido Parcial grs</th>
<th>% Retenido parcial</th>
<th>% Retenido Acumulado</th>
<th>% Que pasa La Malla</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>16.8</td>
<td>12.3</td>
<td>12.3</td>
<td>36.7</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>12.3</td>
<td>36.7</td>
</tr>
<tr>
<td>40</td>
<td>22.3</td>
<td>16.3</td>
<td>28.6</td>
<td>20.4</td>
</tr>
<tr>
<td>60</td>
<td>0.0</td>
<td>0.0</td>
<td>28.6</td>
<td>20.4</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
<td>0.0</td>
<td>28.6</td>
<td>20.4</td>
</tr>
<tr>
<td>200</td>
<td>18.7</td>
<td>13.7</td>
<td>42.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Pasa la Nº 200</td>
<td>9.2</td>
<td>6.7</td>
<td>49.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Suma</td>
<td>67</td>
<td>49.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lavado

<table>
<thead>
<tr>
<th>Tara</th>
<th>V-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso seco (grs)</td>
<td>(1)</td>
</tr>
<tr>
<td>Peso seco lavado (grs)</td>
<td>(2)</td>
</tr>
<tr>
<td>Diferencias (grs)</td>
<td>(1)-(2)=(3)</td>
</tr>
<tr>
<td>Pasa Nº 200 (grs)</td>
<td>(4)</td>
</tr>
<tr>
<td>Suma</td>
<td>(3)+(4)=(5)</td>
</tr>
</tbody>
</table>
Pruebas sobre el material tamizado

Proyecto: Puente Paso Hondo
Perforación: Nº 2
Fecha: ---25/may/2012---
Muestra: Nº 7
Profundidad (pies): 9 a 12

LÍMITE LÍQUIDO

<table>
<thead>
<tr>
<th>Nº de Golpes N</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipiente Nº</td>
<td>T-13</td>
<td>T-14</td>
</tr>
<tr>
<td>PW + Recipiente</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Agua = (1)-(2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>22.3</td>
<td>18.3</td>
</tr>
<tr>
<td>PS = (2)-(4)</td>
<td>-22.3</td>
<td>-18.3</td>
</tr>
<tr>
<td>% de Agua = (3)/(5)*100</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Factor K</td>
<td>0.895</td>
<td>0.985</td>
</tr>
<tr>
<td>Límite Líquido = (6)*K</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

LÍMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Recipiente Nº</th>
<th>T-15</th>
<th>T-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW + Recipiente</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PS + Recipiente</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Agua = (8)-(9)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peso de recipiente</td>
<td>18.25</td>
<td>17.32</td>
</tr>
<tr>
<td>PS = (9)-(11)</td>
<td>-18.25</td>
<td>-17.32</td>
</tr>
<tr>
<td>Límite Plástico (10)/(12)*100</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

RESULTADOS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite Líquido %</td>
<td>0.0%</td>
</tr>
<tr>
<td>Límite Plástico %</td>
<td>0.0%</td>
</tr>
<tr>
<td>Índice de Plasticidad</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

FACTORES K

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.895</td>
</tr>
<tr>
<td>11</td>
<td>0.906</td>
</tr>
<tr>
<td>12</td>
<td>0.915</td>
</tr>
<tr>
<td>13</td>
<td>0.924</td>
</tr>
<tr>
<td>14</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.940</td>
</tr>
<tr>
<td>16</td>
<td>0.947</td>
</tr>
<tr>
<td>17</td>
<td>0.954</td>
</tr>
<tr>
<td>18</td>
<td>0.961</td>
</tr>
<tr>
<td>19</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.973</td>
</tr>
<tr>
<td>21</td>
<td>0.979</td>
</tr>
<tr>
<td>22</td>
<td>0.985</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
</tr>
<tr>
<td>25</td>
<td>1.000</td>
</tr>
<tr>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>29</td>
<td>1.018</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
</tr>
<tr>
<td>31</td>
<td>1.026</td>
</tr>
<tr>
<td>32</td>
<td>1.030</td>
</tr>
<tr>
<td>33</td>
<td>1.034</td>
</tr>
<tr>
<td>34</td>
<td>1.038</td>
</tr>
<tr>
<td>35</td>
<td>1.042</td>
</tr>
<tr>
<td>36</td>
<td>1.045</td>
</tr>
<tr>
<td>37</td>
<td>1.048</td>
</tr>
<tr>
<td>38</td>
<td>1.051</td>
</tr>
<tr>
<td>39</td>
<td>1.054</td>
</tr>
</tbody>
</table>
RESULTADOS DE LOS ENSAYOS DE SUELOS

<table>
<thead>
<tr>
<th>Perf. N°</th>
<th>Profundidad (pies)</th>
<th>Muestra N°</th>
<th>Porcentaje que pasa por tamiz</th>
<th>L.Liq (%)</th>
<th>L.Plas (%)</th>
<th>Ind. P (%)</th>
<th>Clasificación (H.R.B)</th>
<th>Clasificación (sucs)</th>
<th>G (%)</th>
<th>S (%)</th>
<th>F (%)</th>
<th>W (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1½” 1” 3/4” 1/2” 3/8” #4 #10 #40 #20 #p20 #p</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>52.6 49.5 48.4 77.5 21.2 14.7 7.7 18</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 100% 100% 88% 77% 66% 48% 32% 20% 14%</td>
<td>27.7 3</td>
<td>24.5 3</td>
<td>3.20</td>
<td>A-1-a(0)</td>
<td>GC</td>
<td>52%</td>
<td>34%</td>
<td>14%</td>
<td>13.4%</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>59 78 92 142 72 3 18 22 3 19.3 22.6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>100% 100% 95% 87% 79% 66% 52% 34% 18%</td>
<td>27.8 6</td>
<td>24.0 7</td>
<td>3.79</td>
<td>A-1-b(0)</td>
<td>SMSC</td>
<td>34%</td>
<td>48%</td>
<td>18%</td>
<td>21.7%</td>
<td></td>
</tr>
<tr>
<td>6 a 9</td>
<td>3</td>
<td>100% 100% 100% 94% 78% 47% 38% 27% 19%</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0 24 64 122 183 6.8 8.3 6.4 15.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100% 100% 100% 94% 78% 47% 38% 27% 19%</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3 24 64 122 183 6.8 8.3 6.4 15.3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0 24 64 122 183 6.8 8.3 6.4 15.3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3 24 64 122 183 6.8 8.3 6.4 15.3</td>
<td></td>
</tr>
</tbody>
</table>
RESULTADOS DE LOS ENSAYOS DE SUELOS

<table>
<thead>
<tr>
<th>Perf Nº</th>
<th>Profundidad (pies)</th>
<th>Muestra Nº</th>
<th>Porcentaje que pasa por tamiz</th>
<th>L.Liq (%)</th>
<th>L.Plas (%)</th>
<th>Ind. P (%)</th>
<th>Clasificación (H.R.B.)</th>
<th>Clasificación (sucs)</th>
<th>G (%)</th>
<th>S (%)</th>
<th>F (%)</th>
<th>W (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Pro</td>
<td>Pro</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1.5 a 6</td>
<td>5</td>
<td>100 %</td>
<td>91%</td>
<td>89%</td>
<td>77%</td>
<td>64%</td>
<td>A-1-b(0)</td>
<td>SC</td>
<td>36%</td>
<td>53%</td>
<td>11%</td>
</tr>
<tr>
<td>2</td>
<td>6 a 9</td>
<td>6</td>
<td>100 %</td>
<td>100%</td>
<td>100%</td>
<td>72%</td>
<td>67%</td>
<td>32.4</td>
<td>9.51</td>
<td>28%</td>
<td>34%</td>
<td>38%</td>
</tr>
<tr>
<td>2</td>
<td>9 a 12</td>
<td>7</td>
<td>100 %</td>
<td>95%</td>
<td>85%</td>
<td>73%</td>
<td>49%</td>
<td>A-1-a(0)</td>
<td>GM</td>
<td>51%</td>
<td>42%</td>
<td>7%</td>
</tr>
</tbody>
</table>
Proyecto: Puente Paso Hondo
Localización: Santo Tomas del Norte, Chinandega
Fecha: ------25/may/2012--------

Perforación: № 1
Nivel Freático: 1.25 m
Hoja: 1 DE 1
Proyecto: Puente Paso Hondo
Localización: Santo Tomas del Norte, Chinandega
Fecha: 25/may/2012

Perforación: № 2
Nivel Freático: 1. m
Hoja: 1 De 1

<table>
<thead>
<tr>
<th>Profundidad (m)</th>
<th>Estructura</th>
<th>Cascarilla</th>
<th>Descripción geológica y tipo de suelo</th>
<th>Índice Líquido</th>
<th>Índice Pícnico</th>
<th>% de Humedad</th>
<th>Recibo</th>
<th>Golpes por pie</th>
<th>Golpes por profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.457</td>
<td>GC</td>
<td></td>
<td>Gravas arcillosa, mezclas</td>
<td>NP</td>
<td>NP</td>
<td>13.4</td>
<td>12"</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grava-arena-arcillas</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>40 1"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>2"</td>
<td></td>
</tr>
<tr>
<td>1.37</td>
<td>SC</td>
<td></td>
<td>Arenas arcillosas</td>
<td>26</td>
<td>3.7</td>
<td>21.7</td>
<td>13"</td>
<td>18</td>
<td>38 4"</td>
</tr>
<tr>
<td>1.829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>16 5"</td>
<td></td>
</tr>
<tr>
<td>2.745</td>
<td>SC</td>
<td></td>
<td>Arenas arcillosas</td>
<td>32</td>
<td>9.5</td>
<td>28.9</td>
<td>14"</td>
<td>9</td>
<td>13 6"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>10 7"</td>
<td></td>
</tr>
<tr>
<td>3.858</td>
<td>GC</td>
<td></td>
<td>Gravas arcillosas, mezclas</td>
<td>NP</td>
<td>NP</td>
<td>15.1</td>
<td>10"</td>
<td>72</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grava-arena-arcilla</td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>139 10"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>12 11"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>139 12"</td>
<td></td>
</tr>
</tbody>
</table>

PRUEBA NORMAL DE PENETRACIÓN ASTM D 1586 68
N = GOLPES/PIE
INSTITUTO NICARAGUENSE DE ESTUDIOS TERRITORIALES

INETER

DIRECCION GENERAL DE METEOROLOGIA

INTENSIDADES MAXIMAS ANUALES DE PRECIPITACION (mm).

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>CHINANDEGA</th>
<th>Latitud : 12° 38' 00"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>: 87° 08' 00"</td>
<td></td>
</tr>
<tr>
<td>CODIGO</td>
<td>064018</td>
<td>Elevación : 60 msnm</td>
</tr>
<tr>
<td>Tipo</td>
<td>HMP</td>
<td></td>
</tr>
</tbody>
</table>

Periodo : 1971 - 2011

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>360</th>
<th>720</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>179.9</td>
<td>142.6</td>
<td>123.2</td>
<td>91.5</td>
<td>65.3</td>
<td>41.7</td>
<td>19.4</td>
<td>-</td>
</tr>
<tr>
<td>1972</td>
<td>114.6</td>
<td>104.6</td>
<td>98.0</td>
<td>62.4</td>
<td>44.2</td>
<td>31.6</td>
<td>12.6</td>
<td>-</td>
</tr>
<tr>
<td>1973</td>
<td>152.3</td>
<td>133.4</td>
<td>104.0</td>
<td>82.6</td>
<td>54.0</td>
<td>31.7</td>
<td>10.9</td>
<td>-</td>
</tr>
<tr>
<td>1974</td>
<td>190.1</td>
<td>158.3</td>
<td>130.5</td>
<td>78.4</td>
<td>55.6</td>
<td>39.2</td>
<td>24.6</td>
<td>-</td>
</tr>
<tr>
<td>1975</td>
<td>189.1</td>
<td>156.8</td>
<td>132.8</td>
<td>76.8</td>
<td>58.2</td>
<td>33.7</td>
<td>17.1</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>123.6</td>
<td>91.8</td>
<td>88.8</td>
<td>73.6</td>
<td>73.2</td>
<td>47.0</td>
<td>16.1</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>146.4</td>
<td>123.0</td>
<td>100.8</td>
<td>69.4</td>
<td>53.6</td>
<td>37.4</td>
<td>16.7</td>
<td>-</td>
</tr>
<tr>
<td>1978</td>
<td>182.4</td>
<td>147.0</td>
<td>120.0</td>
<td>90.0</td>
<td>48.3</td>
<td>30.2</td>
<td>12.2</td>
<td>-</td>
</tr>
<tr>
<td>1979</td>
<td>207.6</td>
<td>153.0</td>
<td>120.0</td>
<td>86.8</td>
<td>71.8</td>
<td>52.6</td>
<td>21.2</td>
<td>-</td>
</tr>
<tr>
<td>1980</td>
<td>170.4</td>
<td>132.0</td>
<td>116.8</td>
<td>100.0</td>
<td>69.4</td>
<td>37.8</td>
<td>15.0</td>
<td>-</td>
</tr>
<tr>
<td>1981</td>
<td>199.2</td>
<td>178.8</td>
<td>158.8</td>
<td>133.0</td>
<td>87.8</td>
<td>29.0</td>
<td>8.1</td>
<td>-</td>
</tr>
<tr>
<td>1982</td>
<td>262.8</td>
<td>223.2</td>
<td>199.2</td>
<td>162.8</td>
<td>158.1</td>
<td>141.6</td>
<td>81.0</td>
<td>43.3</td>
</tr>
<tr>
<td>1983</td>
<td>240.0</td>
<td>180.0</td>
<td>160.0</td>
<td>120.0</td>
<td>76.4</td>
<td>41.5</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>1984</td>
<td>164.4</td>
<td>132.0</td>
<td>120.0</td>
<td>100.0</td>
<td>80.0</td>
<td>49.2</td>
<td>16.8</td>
<td>-</td>
</tr>
<tr>
<td>1985</td>
<td>242.4</td>
<td>181.2</td>
<td>148.8</td>
<td>105.0</td>
<td>74.0</td>
<td>62.3</td>
<td>34.9</td>
<td>-</td>
</tr>
<tr>
<td>1986</td>
<td>172.8</td>
<td>114.0</td>
<td>108.4</td>
<td>66.4</td>
<td>42.7</td>
<td>26.5</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>1987</td>
<td>206.4</td>
<td>134.4</td>
<td>117.6</td>
<td>78.2</td>
<td>45.0</td>
<td>24.8</td>
<td>6.7</td>
<td>-</td>
</tr>
<tr>
<td>1988</td>
<td>194.4</td>
<td>115.2</td>
<td>103.2</td>
<td>76.6</td>
<td>54.0</td>
<td>16.9</td>
<td>10.4</td>
<td>-</td>
</tr>
<tr>
<td>1989</td>
<td>232.8</td>
<td>184.2</td>
<td>148.0</td>
<td>99.6</td>
<td>85.9</td>
<td>48.6</td>
<td>14.5</td>
<td>-</td>
</tr>
<tr>
<td>1990</td>
<td>159.6</td>
<td>133.8</td>
<td>118.4</td>
<td>78.6</td>
<td>40.7</td>
<td>34.9</td>
<td>7.4</td>
<td>-</td>
</tr>
<tr>
<td>1991</td>
<td>156.0</td>
<td>156.0</td>
<td>156.0</td>
<td>121.6</td>
<td>92.0</td>
<td>56.8</td>
<td>21.1</td>
<td>-</td>
</tr>
<tr>
<td>1992</td>
<td>162.0</td>
<td>116.4</td>
<td>104.0</td>
<td>63.0</td>
<td>44.8</td>
<td>32.1</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td>1993</td>
<td>132.0</td>
<td>105.6</td>
<td>80.0</td>
<td>80.0</td>
<td>68.9</td>
<td>34.7</td>
<td>18.8</td>
<td>-</td>
</tr>
<tr>
<td>1994</td>
<td>168.0</td>
<td>129.6</td>
<td>103.6</td>
<td>66.0</td>
<td>45.0</td>
<td>30.6</td>
<td>15.2</td>
<td>-</td>
</tr>
<tr>
<td>1995</td>
<td>216.0</td>
<td>166.2</td>
<td>132.0</td>
<td>115.0</td>
<td>75.0</td>
<td>53.0</td>
<td>25.1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>122.4</td>
<td>157.2</td>
<td>120.0</td>
<td>168.0</td>
<td>212.4</td>
<td>168.0</td>
<td>170.4</td>
<td>154.8</td>
<td>123.6</td>
<td>169.2</td>
<td>142.8</td>
<td>240.0</td>
<td>133.2</td>
<td>142.8</td>
<td>168.0</td>
<td>176.4</td>
</tr>
<tr>
<td></td>
<td>119.4</td>
<td>156.0</td>
<td>112.2</td>
<td>133.8</td>
<td>174.6</td>
<td>150.0</td>
<td>144.0</td>
<td>135.0</td>
<td>101.4</td>
<td>123.0</td>
<td>135.6</td>
<td>230.4</td>
<td>133.2</td>
<td>138.6</td>
<td>150.0</td>
<td>141.0</td>
</tr>
<tr>
<td></td>
<td>103.6</td>
<td>121.2</td>
<td>104.4</td>
<td>121.2</td>
<td>154.8</td>
<td>119.6</td>
<td>114.4</td>
<td>120.0</td>
<td>100.0</td>
<td>104.4</td>
<td>122.0</td>
<td>180.0</td>
<td>116.4</td>
<td>118.4</td>
<td>142.4</td>
<td>128.4</td>
</tr>
<tr>
<td></td>
<td>85.4</td>
<td>84.0</td>
<td>66.2</td>
<td>84.6</td>
<td>107.4</td>
<td>110.2</td>
<td>84.6</td>
<td>92.8</td>
<td>73.6</td>
<td>98.2</td>
<td>84.8</td>
<td>90.2</td>
<td>82.6</td>
<td>79.8</td>
<td>95.8</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>53.0</td>
<td>43.3</td>
<td>40.4</td>
<td>58.6</td>
<td>65.7</td>
<td>78.4</td>
<td>63.5</td>
<td>56.8</td>
<td>53.8</td>
<td>71.4</td>
<td>65.0</td>
<td>39.8</td>
<td>59.0</td>
<td>52.1</td>
<td>57.0</td>
<td>69.0</td>
</tr>
<tr>
<td></td>
<td>44.0</td>
<td>26.8</td>
<td>29.7</td>
<td>41.3</td>
<td>26.1</td>
<td>41.8</td>
<td>47.9</td>
<td>29.8</td>
<td>32.4</td>
<td>45.3</td>
<td>33.2</td>
<td>39.8</td>
<td>34.1</td>
<td>48.8</td>
<td>30.2</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td>15.7</td>
<td>16.5</td>
<td>16.5</td>
<td>9.9</td>
<td>23.9</td>
<td>11.8</td>
<td>8.1</td>
<td>11.3</td>
<td>24.1</td>
<td>3.5</td>
<td>24.5</td>
<td>12.5</td>
<td>12.0</td>
<td>13.1</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabla 42: Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 10 minuto, comprendida entre el periodo 1971 – 2011.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>INTENSIDADES DE 10 MINUTOS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensidad (mm/h)</td>
<td>Distribución Empírica</td>
<td>Distribución Teórica F(x)</td>
<td>Desviación</td>
<td>Desviación Absoluta</td>
</tr>
<tr>
<td>1</td>
<td>91.8</td>
<td>0.023810</td>
<td>0.00573217</td>
<td>-0.018077</td>
<td>0.018077</td>
</tr>
<tr>
<td>2</td>
<td>101.4</td>
<td>0.047619</td>
<td>0.03301643</td>
<td>-0.014603</td>
<td>0.014603</td>
</tr>
<tr>
<td>3</td>
<td>104.6</td>
<td>0.071429</td>
<td>0.05126347</td>
<td>-0.020165</td>
<td>0.020165</td>
</tr>
<tr>
<td>4</td>
<td>105.6</td>
<td>0.095238</td>
<td>0.05811749</td>
<td>-0.037121</td>
<td>0.037121</td>
</tr>
<tr>
<td>5</td>
<td>112.2</td>
<td>0.119048</td>
<td>0.11765248</td>
<td>-0.001395</td>
<td>0.001395</td>
</tr>
<tr>
<td>6</td>
<td>114.0</td>
<td>0.142857</td>
<td>0.13806044</td>
<td>-0.004797</td>
<td>0.004797</td>
</tr>
<tr>
<td>7</td>
<td>115.2</td>
<td>0.166667</td>
<td>0.15257104</td>
<td>-0.014096</td>
<td>0.014096</td>
</tr>
<tr>
<td>8</td>
<td>116.4</td>
<td>0.190476</td>
<td>0.16775841</td>
<td>-0.022718</td>
<td>0.022718</td>
</tr>
<tr>
<td>9</td>
<td>119.4</td>
<td>0.214286</td>
<td>0.20837358</td>
<td>-0.005912</td>
<td>0.005912</td>
</tr>
<tr>
<td>10</td>
<td>123.0</td>
<td>0.238095</td>
<td>0.26113415</td>
<td>0.023039</td>
<td>0.023039</td>
</tr>
<tr>
<td>11</td>
<td>123.0</td>
<td>0.261905</td>
<td>0.26113415</td>
<td>-0.000771</td>
<td>0.000771</td>
</tr>
<tr>
<td>12</td>
<td>129.6</td>
<td>0.285714</td>
<td>0.36425631</td>
<td>0.078542</td>
<td>0.078542</td>
</tr>
<tr>
<td>13</td>
<td>132.0</td>
<td>0.309524</td>
<td>0.40231251</td>
<td>0.092789</td>
<td>0.092789</td>
</tr>
<tr>
<td>14</td>
<td>132.0</td>
<td>0.333333</td>
<td>0.40231251</td>
<td>0.068979</td>
<td>0.068979</td>
</tr>
<tr>
<td>15</td>
<td>133.2</td>
<td>0.357143</td>
<td>0.42123282</td>
<td>0.064090</td>
<td>0.064090</td>
</tr>
<tr>
<td>16</td>
<td>133.4</td>
<td>0.380952</td>
<td>0.42437452</td>
<td>0.043422</td>
<td>0.043422</td>
</tr>
<tr>
<td>17</td>
<td>133.8</td>
<td>0.404762</td>
<td>0.43064611</td>
<td>0.025884</td>
<td>0.025884</td>
</tr>
<tr>
<td>18</td>
<td>133.8</td>
<td>0.428571</td>
<td>0.43064611</td>
<td>0.002075</td>
<td>0.002075</td>
</tr>
<tr>
<td>19</td>
<td>134.4</td>
<td>0.452381</td>
<td>0.44002110</td>
<td>-0.012360</td>
<td>0.012360</td>
</tr>
<tr>
<td>20</td>
<td>135.0</td>
<td>0.476190</td>
<td>0.44935273</td>
<td>-0.026838</td>
<td>0.026838</td>
</tr>
<tr>
<td>21</td>
<td>135.6</td>
<td>0.500000</td>
<td>0.45863615</td>
<td>-0.041364</td>
<td>0.041364</td>
</tr>
<tr>
<td>22</td>
<td>138.6</td>
<td>0.523810</td>
<td>0.50417502</td>
<td>-0.019635</td>
<td>0.019635</td>
</tr>
<tr>
<td>23</td>
<td>141</td>
<td>0.547619</td>
<td>0.53932007</td>
<td>-0.008299</td>
<td>0.008299</td>
</tr>
<tr>
<td>24</td>
<td>142.6</td>
<td>0.571429</td>
<td>0.56200331</td>
<td>-0.009425</td>
<td>0.009425</td>
</tr>
<tr>
<td>25</td>
<td>144.0</td>
<td>0.595238</td>
<td>0.58131633</td>
<td>-0.013922</td>
<td>0.013922</td>
</tr>
<tr>
<td>26</td>
<td>147.0</td>
<td>0.619048</td>
<td>0.62090260</td>
<td>0.001855</td>
<td>0.001855</td>
</tr>
<tr>
<td>27</td>
<td>150.0</td>
<td>0.642857</td>
<td>0.65789984</td>
<td>0.015043</td>
<td>0.015043</td>
</tr>
<tr>
<td>28</td>
<td>150.0</td>
<td>0.666667</td>
<td>0.65789984</td>
<td>-0.008767</td>
<td>0.008767</td>
</tr>
</tbody>
</table>
Tabla 43: Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 15 minuto, comprendida entre el periodo 1971 – 2011.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>INTENSIDADES DE 15 MINUTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribución Empírica</td>
</tr>
<tr>
<td></td>
<td>(mm/h)</td>
</tr>
<tr>
<td>1</td>
<td>80.0</td>
</tr>
<tr>
<td>2</td>
<td>88.8</td>
</tr>
<tr>
<td>3</td>
<td>98.0</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>100.8</td>
</tr>
<tr>
<td>6</td>
<td>103.2</td>
</tr>
<tr>
<td>7</td>
<td>103.6</td>
</tr>
<tr>
<td>8</td>
<td>103.6</td>
</tr>
<tr>
<td>9</td>
<td>104.0</td>
</tr>
<tr>
<td>10</td>
<td>104.0</td>
</tr>
<tr>
<td>11</td>
<td>104.4</td>
</tr>
<tr>
<td>12</td>
<td>104.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>108.4</td>
</tr>
<tr>
<td>14</td>
<td>114.4</td>
</tr>
<tr>
<td>15</td>
<td>116.4</td>
</tr>
<tr>
<td>16</td>
<td>116.8</td>
</tr>
<tr>
<td>17</td>
<td>117.6</td>
</tr>
<tr>
<td>18</td>
<td>118.4</td>
</tr>
<tr>
<td>19</td>
<td>118.4</td>
</tr>
<tr>
<td>20</td>
<td>119.6</td>
</tr>
<tr>
<td>21</td>
<td>120.0</td>
</tr>
<tr>
<td>22</td>
<td>120.0</td>
</tr>
<tr>
<td>23</td>
<td>120.0</td>
</tr>
<tr>
<td>24</td>
<td>120.0</td>
</tr>
<tr>
<td>25</td>
<td>121.2</td>
</tr>
<tr>
<td>26</td>
<td>121.2</td>
</tr>
<tr>
<td>27</td>
<td>122.0</td>
</tr>
<tr>
<td>28</td>
<td>123.2</td>
</tr>
<tr>
<td>29</td>
<td>128.4</td>
</tr>
<tr>
<td>30</td>
<td>130.5</td>
</tr>
<tr>
<td>31</td>
<td>132.0</td>
</tr>
<tr>
<td>32</td>
<td>132.8</td>
</tr>
<tr>
<td>33</td>
<td>142.4</td>
</tr>
<tr>
<td>34</td>
<td>148.0</td>
</tr>
<tr>
<td>35</td>
<td>148.8</td>
</tr>
<tr>
<td>36</td>
<td>154.8</td>
</tr>
<tr>
<td>37</td>
<td>156.0</td>
</tr>
<tr>
<td>38</td>
<td>158.8</td>
</tr>
<tr>
<td>39</td>
<td>160.0</td>
</tr>
<tr>
<td>40</td>
<td>180.0</td>
</tr>
<tr>
<td>41</td>
<td>199.2</td>
</tr>
</tbody>
</table>

Xmedia	123.515	Desviación Máxima	0.101640
Desv.Stand	24.210		
n	41		
Tabla 44: Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 30 minuto, comprendida entre el periodo 1971 – 2011.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>INTENSIDADES DE 30 MINUTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensidad (mm/h)</td>
</tr>
<tr>
<td>1</td>
<td>62.4</td>
</tr>
<tr>
<td>2</td>
<td>63.0</td>
</tr>
<tr>
<td>3</td>
<td>66.0</td>
</tr>
<tr>
<td>4</td>
<td>66.2</td>
</tr>
<tr>
<td>5</td>
<td>66.4</td>
</tr>
<tr>
<td>6</td>
<td>69.4</td>
</tr>
<tr>
<td>7</td>
<td>73.6</td>
</tr>
<tr>
<td>8</td>
<td>73.6</td>
</tr>
<tr>
<td>9</td>
<td>76.6</td>
</tr>
<tr>
<td>10</td>
<td>76.8</td>
</tr>
<tr>
<td>11</td>
<td>78.2</td>
</tr>
<tr>
<td>12</td>
<td>78.4</td>
</tr>
<tr>
<td>13</td>
<td>78.6</td>
</tr>
<tr>
<td>14</td>
<td>79.8</td>
</tr>
<tr>
<td>15</td>
<td>80.0</td>
</tr>
<tr>
<td>16</td>
<td>82.6</td>
</tr>
<tr>
<td>17</td>
<td>82.6</td>
</tr>
<tr>
<td>18</td>
<td>84.0</td>
</tr>
<tr>
<td>19</td>
<td>84.6</td>
</tr>
<tr>
<td>20</td>
<td>84.6</td>
</tr>
<tr>
<td>21</td>
<td>84.8</td>
</tr>
<tr>
<td>22</td>
<td>85.4</td>
</tr>
<tr>
<td>23</td>
<td>86</td>
</tr>
<tr>
<td>24</td>
<td>86.8</td>
</tr>
<tr>
<td>25</td>
<td>90.0</td>
</tr>
<tr>
<td>26</td>
<td>91.5</td>
</tr>
<tr>
<td>27</td>
<td>92.8</td>
</tr>
<tr>
<td>28</td>
<td>95.8</td>
</tr>
</tbody>
</table>
Tabla 45: Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 60 minuto, comprendida entre el periodo 1971 – 2011.

<table>
<thead>
<tr>
<th>ANOS</th>
<th>Intensidad (mm/h)</th>
<th>Intensidad de 60 Minutos</th>
<th>Intensidad (mm/h)</th>
<th>Intensidad de 60 Minutos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.4</td>
<td>0.023810</td>
<td>0.08350713</td>
<td>0.059698</td>
</tr>
<tr>
<td>2</td>
<td>40.7</td>
<td>0.047619</td>
<td>0.08741014</td>
<td>0.039791</td>
</tr>
<tr>
<td>3</td>
<td>42.7</td>
<td>0.071429</td>
<td>0.11609319</td>
<td>0.044665</td>
</tr>
<tr>
<td>4</td>
<td>43.3</td>
<td>0.095238</td>
<td>0.12557460</td>
<td>0.030337</td>
</tr>
<tr>
<td>5</td>
<td>44.2</td>
<td>0.119048</td>
<td>0.14051670</td>
<td>0.021469</td>
</tr>
<tr>
<td>6</td>
<td>44.8</td>
<td>0.142857</td>
<td>0.15093844</td>
<td>0.008081</td>
</tr>
<tr>
<td>7</td>
<td>45.0</td>
<td>0.166667</td>
<td>0.15449107</td>
<td>-0.012176</td>
</tr>
<tr>
<td>8</td>
<td>45.0</td>
<td>0.190476</td>
<td>0.15449107</td>
<td>-0.035985</td>
</tr>
<tr>
<td>9</td>
<td>48.3</td>
<td>0.214286</td>
<td>0.21850383</td>
<td>0.003865</td>
</tr>
<tr>
<td>10</td>
<td>52.1</td>
<td>0.238095</td>
<td>0.30015894</td>
<td>0.062064</td>
</tr>
<tr>
<td>11</td>
<td>53.0</td>
<td>0.261905</td>
<td>0.32038418</td>
<td>0.058479</td>
</tr>
</tbody>
</table>

INTENSIDADES DE PRECIPITACION MAXIMAS ANUALES

ESTACION METEOROLÓGICA: Chinandega

PERIODO: 1971-2010
<table>
<thead>
<tr>
<th></th>
<th>Xmedia</th>
<th>Desviación</th>
<th>Máxima</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>53.6</td>
<td>0.285714</td>
<td>0.33395903</td>
<td>0.048245</td>
</tr>
<tr>
<td>13</td>
<td>53.8</td>
<td>0.309524</td>
<td>0.33849586</td>
<td>0.028972</td>
</tr>
<tr>
<td>14</td>
<td>54.0</td>
<td>0.333333</td>
<td>0.34303736</td>
<td>0.009704</td>
</tr>
<tr>
<td>15</td>
<td>54.0</td>
<td>0.357143</td>
<td>0.34303736</td>
<td>-0.014105</td>
</tr>
<tr>
<td>16</td>
<td>55.6</td>
<td>0.380952</td>
<td>0.37944999</td>
<td>0.001502</td>
</tr>
<tr>
<td>17</td>
<td>56.8</td>
<td>0.404762</td>
<td>0.40670671</td>
<td>0.001945</td>
</tr>
<tr>
<td>18</td>
<td>57</td>
<td>0.428571</td>
<td>0.41123349</td>
<td>-0.017338</td>
</tr>
<tr>
<td>19</td>
<td>58.2</td>
<td>0.452381</td>
<td>0.44717391</td>
<td>0.028972</td>
</tr>
<tr>
<td>20</td>
<td>58.6</td>
<td>0.476190</td>
<td>0.4717391</td>
<td>-0.029017</td>
</tr>
<tr>
<td>21</td>
<td>59</td>
<td>0.500000</td>
<td>0.45606229</td>
<td>-0.043938</td>
</tr>
<tr>
<td>22</td>
<td>63.5</td>
<td>0.523810</td>
<td>0.55197580</td>
<td>0.028166</td>
</tr>
<tr>
<td>23</td>
<td>65.0</td>
<td>0.547619</td>
<td>0.58183967</td>
<td>0.034221</td>
</tr>
<tr>
<td>24</td>
<td>65.3</td>
<td>0.571429</td>
<td>0.5876592</td>
<td>0.016237</td>
</tr>
<tr>
<td>25</td>
<td>65.7</td>
<td>0.595238</td>
<td>0.5953566</td>
<td>0.000118</td>
</tr>
<tr>
<td>26</td>
<td>68.9</td>
<td>0.619048</td>
<td>0.65350237</td>
<td>0.034455</td>
</tr>
<tr>
<td>27</td>
<td>69</td>
<td>0.642857</td>
<td>0.65522012</td>
<td>0.012363</td>
</tr>
<tr>
<td>28</td>
<td>69.4</td>
<td>0.666667</td>
<td>0.66202979</td>
<td>-0.004637</td>
</tr>
<tr>
<td>29</td>
<td>71.4</td>
<td>0.690476</td>
<td>0.69459975</td>
<td>0.004124</td>
</tr>
<tr>
<td>30</td>
<td>71.8</td>
<td>0.714286</td>
<td>0.70081768</td>
<td>-0.013468</td>
</tr>
<tr>
<td>31</td>
<td>73.2</td>
<td>0.738095</td>
<td>0.7218072</td>
<td>-0.016288</td>
</tr>
<tr>
<td>32</td>
<td>74.0</td>
<td>0.761905</td>
<td>0.73326548</td>
<td>-0.028639</td>
</tr>
<tr>
<td>33</td>
<td>75.0</td>
<td>0.785714</td>
<td>0.74704792</td>
<td>-0.038666</td>
</tr>
<tr>
<td>34</td>
<td>76.4</td>
<td>0.809524</td>
<td>0.76535279</td>
<td>-0.044171</td>
</tr>
<tr>
<td>35</td>
<td>78.4</td>
<td>0.833333</td>
<td>0.78955950</td>
<td>-0.043774</td>
</tr>
<tr>
<td>36</td>
<td>80.0</td>
<td>0.857143</td>
<td>0.80734758</td>
<td>-0.049795</td>
</tr>
<tr>
<td>37</td>
<td>85.9</td>
<td>0.880952</td>
<td>0.86197491</td>
<td>-0.018977</td>
</tr>
<tr>
<td>38</td>
<td>87.8</td>
<td>0.904762</td>
<td>0.87629791</td>
<td>-0.028464</td>
</tr>
<tr>
<td>39</td>
<td>90.2</td>
<td>0.928571</td>
<td>0.89241855</td>
<td>-0.036153</td>
</tr>
<tr>
<td>40</td>
<td>92.0</td>
<td>0.952381</td>
<td>0.90319257</td>
<td>-0.049188</td>
</tr>
<tr>
<td>41</td>
<td>158.1</td>
<td>0.976190</td>
<td>0.99829958</td>
<td>0.022109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>41</th>
<th>Desviación</th>
<th>Máxima</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xmedia</td>
<td>64.417</td>
<td>0.062064</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desv.Stand</th>
<th>20.695</th>
</tr>
</thead>
</table>

| Ingenería Civil | 11 |
Tabla 46: Datos del cálculo de la distribución empírica, teórica y desviación máxima absoluta para las duraciones de lluvia de 120 minuto, comprendida entre el periodo 1971 – 2011.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>INTENSIDADES DE 120 MINUTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensidad (mm/h)</td>
</tr>
<tr>
<td>1</td>
<td>16.9</td>
</tr>
<tr>
<td>2</td>
<td>24.8</td>
</tr>
<tr>
<td>3</td>
<td>26.1</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
</tr>
<tr>
<td>5</td>
<td>26.8</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
</tr>
<tr>
<td>7</td>
<td>29.7</td>
</tr>
<tr>
<td>8</td>
<td>29.8</td>
</tr>
<tr>
<td>9</td>
<td>30.2</td>
</tr>
<tr>
<td>10</td>
<td>30.2</td>
</tr>
<tr>
<td>11</td>
<td>30.6</td>
</tr>
<tr>
<td>12</td>
<td>31.6</td>
</tr>
<tr>
<td>13</td>
<td>31.7</td>
</tr>
<tr>
<td>14</td>
<td>32.1</td>
</tr>
<tr>
<td>15</td>
<td>32.4</td>
</tr>
<tr>
<td>16</td>
<td>33.2</td>
</tr>
<tr>
<td>17</td>
<td>33.7</td>
</tr>
<tr>
<td>18</td>
<td>34.1</td>
</tr>
<tr>
<td>19</td>
<td>34.7</td>
</tr>
<tr>
<td>20</td>
<td>34.9</td>
</tr>
<tr>
<td>21</td>
<td>37.4</td>
</tr>
<tr>
<td>22</td>
<td>37.8</td>
</tr>
<tr>
<td>23</td>
<td>39.2</td>
</tr>
<tr>
<td>24</td>
<td>39.8</td>
</tr>
<tr>
<td>25</td>
<td>39.8</td>
</tr>
<tr>
<td>26</td>
<td>41.3</td>
</tr>
<tr>
<td>27</td>
<td>41.5</td>
</tr>
<tr>
<td>28</td>
<td>41.7</td>
</tr>
<tr>
<td>29</td>
<td>41.8</td>
</tr>
</tbody>
</table>
Propuesta de un Diseño Estructural de un Puente en la Comarca Paso Hondo

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>44.0</td>
<td>0.714286</td>
<td>0.64432455</td>
<td>-0.069961</td>
</tr>
<tr>
<td>31</td>
<td>45.3</td>
<td>0.738095</td>
<td>0.66873510</td>
<td>-0.069360</td>
</tr>
<tr>
<td>32</td>
<td>47.0</td>
<td>0.761905</td>
<td>0.69876207</td>
<td>-0.063143</td>
</tr>
<tr>
<td>33</td>
<td>47.9</td>
<td>0.785714</td>
<td>0.71378913</td>
<td>-0.071925</td>
</tr>
<tr>
<td>34</td>
<td>48.6</td>
<td>0.809524</td>
<td>0.72506367</td>
<td>-0.084460</td>
</tr>
<tr>
<td>35</td>
<td>48.8</td>
<td>0.833333</td>
<td>0.72821901</td>
<td>-0.105114</td>
</tr>
<tr>
<td>36</td>
<td>49.2</td>
<td>0.857143</td>
<td>0.73444230</td>
<td>-0.122701</td>
</tr>
<tr>
<td>37</td>
<td>52.6</td>
<td>0.880952</td>
<td>0.78275254</td>
<td>-0.098200</td>
</tr>
<tr>
<td>38</td>
<td>53.0</td>
<td>0.904762</td>
<td>0.78791372</td>
<td>-0.116848</td>
</tr>
<tr>
<td>39</td>
<td>56.8</td>
<td>0.928571</td>
<td>0.83185977</td>
<td>-0.096712</td>
</tr>
<tr>
<td>40</td>
<td>62.3</td>
<td>0.952381</td>
<td>0.88103785</td>
<td>-0.071343</td>
</tr>
<tr>
<td>41</td>
<td>141.6</td>
<td>0.976190</td>
<td>0.99942349</td>
<td>0.023233</td>
</tr>
</tbody>
</table>

Xmedia	**Desviación Máxima**	**0.155180**
Desv. Stand | **18.840**
n | **41**
14. **SET DE PLANOS**
"PROPUESTA DE UN DISEÑO ESTRUCTURAL DE UN PUENTE DE 15m PARA UN PERIODO DE 50 AÑOS EN LA COMARCA PASO HONDO, MUNICIPIO DE SANTO TOMAS DEL NORTE-CHINANDEGA"
Losa de Concreto Prefabricada
F_c = 210 kg/cm²

3 Varilla de 5/8" @ 25 cm
Varilla de 3/8" @ 15 cm
Varilla de 3/8" @ 15 cm
Varilla de 5/8"
3 m @ 25 cm

SECCION DE VIGA DE
VIGA DE ASIENTO
Esc. = 1:15

Empaque de Neopreno de 2"

DE ASIENTO
DETALLE DE VIGA
DE ASIENTO
Esc. = 1:15

Platina de 14" X 20 X 1"
Empaque de Neopreno de 2"

3 Varilla de 5/8" @ 25 cm
Varilla de 3/8" @ 15 cm
Varilla de 3/8" @ 15 cm

SECCION DE VIGA DE
VIGA DE ASIENTO
Esc. = 1:15

Detalles de Viga de Asiento

Contenido:
Revisado por:
Fecha de entrega:
Plano 8/8
Escala:
Asignada

Detallado por:
Br. Séraph Emre Sánchez
Br. Bayardo José García
Br. Moises Fernando Moreno
Fecha de revisión:
16/6/2013
DETALLE DE ACERA

2 Varilla de 5/8"
E70 -70 XX

Varilla de 3/8" @ 25 cm
Varilla de 1/2" @ 25 cm

2 Varilla de 5/8"
E70 - XX

Los de Concreto Prefabricado
VM-1

Platina de 8" X 8" X 3/8"

E - 60-11
3/16"

Tubo de Acero de Ø 3"

Detalle # 2
DETALLE TIPICO DE BARANDAL
Esc. = 1:10

4 Pernos de Ø 3/4" X 8"

Platina de 4"x4"x3/8"

Detalle # 1
DETALLE TIPICA DE FIJACION DE CONECTORES
Esc. = 1:10

Varilla de 5/8" @ 30 cm
Varilla de 3/8" @ 25 cm
Varilla de 1/2" @ 25 cm

Platina de 8" X 8" X 3/8"

4 Pernos de Ø 3/4" X 8"

E - 60-11
3/16"

Tubo de Acero de Ø 3"

Detalles de Acera, Barandal y Fijacion de Conectores

Dibujado por: Dr. Bayardo José García
Dr. Moises Fernando Moreno

Revisado por: Ingeniero. Bayardo Alberino

Fecha de entrega: 16/6/2013
Fecha de revisión:

Plano: 6/18
Escala: Asignada

Contenido:
Planta de Estructura Superior

Dibujado por: Dr. Bayardo José García
Dibujado por: Br. Moises Fernando Moreno

Contenido:

Fecha de entrega: 16/6/2013
Plano: 3 / 8
SECCIÓN LONGITUDINAL.

Losa de concreto prefabricada

1.50 m

15.00 m

Ciclopeo

PLANILLA DE ESTRUCTURA SUPERIOR

ALETON 1

15.00 m

ALETON 3

ALETON 4

PLANTA DE ESTRUCTURA SUPERIOR

Dibujado por: Br. Moisés Fernando Moreno

Contenido:

Sección Longitudinal con Cotas de Nivel
Prefabricada Ver Det. 1
En Unión de VM-1 y Losa de Concreto y Epoxico
Boquetes Para Relleno
De Concreto y Epoxico
En Unión de VM-1 y Losa Prefabricada Ver Det. 1

VM-1 — VM-1 — VM-1

5.20 m

2.00 m

4.00 m

2.00 m

VM-1

Losa de Concreto

Boquetes Para Relleno
De Concreto y Epoxico
En Unión de VM-1 y Losa Prefabricada Ver Det. 1

Platina de 8" X 8" X 3/8"
Con 4 Pernos de ø 3/4" X 8"
Para Fijación de Tubos
De Barandal, Ver. Det. 2

Losa de Concreto

5 / 8
16/08/2013