FLUJO DE MACRONUTRIENTES DE FÓSFORO Y NITRÓGENO DEL SUBSISTEMA HIDROLÓGICO DEL LAGO COCIBOLCA

Selvia Flores Sánchez

1Centro de Investigaciones para los Recursos Acuáticos, Departamento de Hidroquímica, selviafloress@yahoo.com

RESUMEN

Con el propósito de estimar el flujo superficial de macronutrientes del subsistema hidrológico Lago Cocibolca, se cuantificó la carga por observación directa de seis de sus principales tributarios entre noviembre de 2002 y julio de 2003. Además, mediante la aplicación de un modelo se estimó la carga de toda el área superficial de drenaje.

Los tributarios Oyate y Tepeanalca transportaron la mayor carga observada de fósforo y nitrógeno, generada por la influencia directa del régimen hidrológico asociado con el uso del suelo predominantemente para la ganadería.

La carga total modelada de fósforo al ecosistema indica que la población es el mayor aportador. En cuanto al nitrógeno, la mayor contribución se le atribuye al uso del suelo.

En el sitio Salida del Lago el nutrient limitante es el fósforo en casi todo el período estudiado. Asimismo se clasificó en estado mesotrófico, presentando cambios mensuales desde oligotrófico hasta eutrófico.

La notable discrepancia entre las cargas observadas y las modeladas, pone en evidencia que las primferas, si se obtienen de forma sistemática expresan la realidad individual, base fundamental para la ejecución de un programa de manejo de cuencas.

Palabras claves: Carga de nutrientes, nutrient limitante, coeficientes de exportación, área de drenaje, eutrofización.

INTRODUCCIÓN

Hasta la fecha no existen reportes específicos sobre la cantidad de nutrientes (fósforo y nitrógeno) que recibe el lago Cocibolca procedente de su cuenca de drenaje a través de vertidos de aguas residuales municipales, industriales, agrícolas y pecuarias, de los ríos y de manera difusa por escorrentía superficial. Estos nutrientes son las sustancias que provocan los procesos de eutrofización en las aguas continentales. Por lo tanto, estimar el aporte anual de fósforo y nitrógeno que recibe el lago mediante la aplicación de dos metodologías diferentes, permitirá identificar las actividades humanas y las áreas que contribuyen con el mayor aporte, evaluar su estado trófico en la salida hacia el río San Juan y por ende facilitar información complementaria para la ejecución de programas de manejo de cuencas.

DISEÑO METODOLÓGICO

Características generales del área de estudio

La cuenca de drenaje del subsistema hidrológico Lago Cocibolca cuenta con una superficie total de 23 848 km² (19 693 km² en Nicaragua y 4 155 km² en Costa Rica). El lago Cocibolca (8 000
km²) es el ecosistema de agua dulce más importante del Istmo Centroamericano (MARENA, 1997). En él drenan unos 25 ríos provenientes de 16 subcuenas circundantes. Se considera de gran importancia para el país precisamente por la diversidad de usos asociados a él, entre los que se destacan la pesca, la navegación, las actividades recreativas y su potencial como futura fuente para consumo humano (OEA, 1996).

Procedimiento de muestreo y análisis
Se muestrearon seis de un total de 25 ríos que drenan al Lago Cocibolca (Malacatoya, Mayales, Acoyapa, Oyate, Tepenaguasapa y Ochomogo) y un punto en la Salida del Lago (Figura 1) entre noviembre de 2002 y julio de 2003.

![Figura 1.- Localización de los sitios de muestreo](image)

Para las cargas observadas se midió el caudal de los ríos entre 500 y 1000 m antes de su desembocadura en el Lago, con el método Medición de Velocidad en el Centroide del Flujo. Para la determinación analítica de fósforo y nitrógeno total se utilizó la metodología descrita en el Standard Methods for the examination of water and wastewater 20th, Washington: APHA, 1999.

Para las cargas modeladas de nutrientes se utilizó el método Cálculo de la Carga de Nutrientes en Lagos desarrollado por Jørgensen y Vollenweider (1989).

RESULTADOS Y DISCUSIÓN

Cargas observadas de macronutrientes
Para el río Tepenaguasapa se reportan las cargas máximas tanto para fósforo como para nitrógeno (603 y 6001 ton. a⁻¹ respectivamente) en el mes de julio, esto es por el incremento de la escorrentía debido a las altas precipitaciones típicas de la época. Según Reading and Rast (1989), las mayores entradas de material erosionado a los cuerpos de agua normalmente coinciden con el patrón temporal de la lluvia.

Los aportes del río Ochomogo, localizado en el sector Oeste de la cuenca de drenaje, oscilaron entre 0.2 y 10 ton. a⁻¹ de fósforo y de 0.2 a 56 ton. a⁻¹ de nitrógeno, coincidiendo con el patrón estacional de la zona: el caudal incrementa gradualmente en función de las precipitaciones influyendo otros factores como el uso del suelo y la aplicación estacional de fertilizantes.
Cargas modeladas de macronutrientes según el uso y sector

Del total de la carga entrante modelada para fósforo (317 ton a⁻¹) y nitrógeno (40012 ton a⁻¹) según el uso del suelo al Lago Cocibolca, la mayor contribución procede de la vertiente Este con aportes equivalentes al 69% (228 ton a⁻¹) y 40% (1605 ton a⁻¹) respectivamente, atribuidos principalmente a la actividad ganadera (MARENA-PROCUENCA, 2003), correspondiéndole extensión superficial de su área de drenaje dedicada al cultivo de pastos 77%.

En la Figura 3 se observa que el 58% de la carga total modelada para ambos nutrientes (equivale a 350 ton P y 917 ton N a⁻¹) generada por la población, procede de la vertiente Oeste. En áreas donde la población está más dispersa (el sector Sur) se identificaron cargas particularmente bajas.

Figura 2. Contribución por vertiente de la carga entrante modelada en relación al uso del suelo al Lago Cocibolca: a) Aporte de fósforo total b) Aporte de nitrógeno total

La carga anual de nutrientes procedente de la precipitación fue de 328 y 3932 toneladas para fósforo y nitrógeno respectivamente. Este aporte representa el 26% de P y el 41% de N en relación a la carga total entrante modelada.

Figura 3. Contribución por vertiente de la carga entrante modelada para fósforo y nitrógeno procedente de la población al Lago Cocibolca

Comparación entre cargas observadas y cargas modeladas

Los resultados reflejaron una notable discrepancia entre ambas metodologías. A excepción del río Tepenaguasapa, los aportes de las cargas observadas probablemente están subestimadas en relación a las modeladas, sugiriendo que para cuantificar cargas de macronutrientes bajo las condiciones hidrológicas específicas se requiere de un periodo de estudio mayor (al menos de tres años).
SALIDA DEL LAGO COCIBOLCA

Concentración y descarga de macronutrientes
La concentración mínima para fósforo y nitrógeno se registró en el mes de noviembre con 0.003 y 0.238 mg L⁻¹ respectivamente. Asimismo se reportó una mediana de 0.041 mg L⁻¹ para fósforo y 0.51 mg L⁻¹ para nitrógeno.
La carga mediana total observada para fósforo y nitrógeno que sale del Lago Cocibolca se estimó en 656 y 7602 toneladas anuales respectivamente.

Relación N:P y estado trófico
Aplicando el criterio de Jorgensen y Vollenweider (1989), se determinó que el nutrientes limitante es el fósforo dado la relación N:P que presentó valores de mediana y media de 15:1 y 26:1 respectivamente.
Tomando como referencia el criterio desarrollado por el CEPIIS (Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente) para la clasificación trófica de lagos cálidos tropicales (Salas & Martino, 2001), valor promedio de fósforo total, el lago Cocibolca se clasificó en estado mesotrófico.

CONCLUSIONES

Los tributarios Oyate y Tepenaguasapa (vertiente Este) se identificaron como los mayores contribuyentes con respecto a cargas observadas.
La carga total entrante modelada de fósforo al ecosistema indica que la población es el mayor aportador (49%), seguido por la precipitación (26%).
Se identificó el sector Este como el mayor contribuyente de la carga de nutrientes generada por las actividades relacionadas con el uso del suelo y el Oeste por la población (58%).
La notable discrepancia entre las cargas observadas y las modeladas evidencia que las cargas observadas si se obtienen de forma sistemática expresan la realidad individual, base fundamental para la ejecución de un programa de manejo de cuencas.
En el sitio Salida del Lago la relación N:P sugiere al fósforo como el nutriente limitante, ubicándose en estado mesotrófico según los valores promedio de fósforo.

RECOMENDACIONES

Identificar y elaborar un inventario a nivel de subcuenca de las fuentes puntuales que drenan aguas residuales municipales e industriales a los ríos del subsistema hidrológico Lago Cocibolca.
Diseñar un programa de muestreo incluyendo principalmente los períodos de descarga hídrica elevada incluyendo un mayor número de tributarios por un período mínimo de tres años.
Fortalecer financiera y técnicamente a las autoridades municipales en lo relativo a los problemas de uso del suelo y el manejo de cuencas hidrográficas con miras a disminuir el deterioro progresivo de los suelos.
Aplicar los modelos teóricos de estimación de cargas en áreas donde no sea posible realizar mediciones directas.
REFERENCIA


