

Recinto Universitario "Rubén Darío" Facultad de Ciencias e Ingeniería Departamento de Tecnología

Ingeniería Geológica

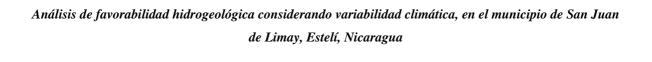
Análisis de Favorabilidad Hidrogeológica considerando Variabilidad Climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

Trabajo Monográfico para optar al Título de Ingeniera Geóloga

Presentado por:

Br. Belkys Lorena Aguilar Zeledón

Tutora:


PhD. Heyddy Loredana Calderón Palma

Asesor:

PhD. Carlos Rubí Téllez

Asesor Metodológico:

MSc. Karen Acevedo Mena

Dedicatoria

A mis madres Martha Zeledón Araúz y Lorena Araúz Palacios, por ser los pilares fundamentales en mi vida.

Agradecimiento

Agradezco, primeramente a Dios por concederme llegar hasta acá.

A mi alma mater UNAN-Managua, al Instituto de Geología y Geofísica por permitirme la oportunidad de ser parte de ellos, brindarme las herramientas necesarias para ser un buen profesional.

A mis maestros, quienes me forjaron durante mi carrera universitaria, gracias por su gran dedicación y entrega, Msc. Gema Velásquez, Msc. Xochil Zambrana, Ing. Edmundo Aguirre, Msc. Francisco Espinoza y Msc. Angélica Muñoz.

A mi excelente tutora PhD. Heyddy Calderón, quien me brindo su tiempo, dedicación y compromiso, agradezco inmensamente por transmitirme sus conocimientos y fortalecer los mios.

A mi asesor, PhD. Carlos Rubí, gracias por sus consejos, su enseñanza y tiempo en todo el proceso.

Agradezco al personal de investigación que me brindo sus buenos consejos, apoyo y ayuda técnica en el transcurso del trabajo, particularmente al Lic. Armando Muñoz e Ing. Marjorie Toruño.

A mis compañeros, quienes han crecido profesionalmente conmigo, gracias por su motivación, en especial al Ing. Antonio Pacheco por su tiempo y apoyo.

A la Alcaldía de San Juan de Limay, al vicealcalde Ing. Jairo Osorio por su apoyo, brindarnos apoyo en el proceso de campo.

Especialmente a la Red de Investigación Hidrogeológica para el Corredor Seco Centroaméricano (HidroREDCA), por darme la oportunidad de realizar mi investigación bajo el marco de la red, por su apoyo en todo el desarrollo de la misma.

"2021: AÑO DEL BICENTENARIO DE LA INDEPENDENCIA DE CENTROAMÉRICA".

Managua, 11 de noviembre del 2021.

MSc.
Elim Campos Pérez
Director
Departamento de Tecnología
Facultad de Ciencias e Ingeniería
UNAN-Managua
Sus Despacho.

Estimado Maestro Campos, Reciba cordial saludo de mi parte.

Por este medio me dirijo a usted, para informarle que he guiado orientado y revisado el trabajo de culminación de estudios de grado del bachiller: **Belkys Lorena Aguilar Zeledón** (16045749), el cual lleva por título: "Análisis de Favorabilidad Hidrogeológica considerando Variabilidad Climática en el municipio de San Juan de Limay, Estelí, Nicaragua".

No omito manifestar que he seguido el proceso de elaboración del documento y considero que cumple con los requisitos establecidos por la Universidad. Por lo tanto, solicito realizar trámites requeridos para el proceso de defensa y titulación.

Sin otro particular, aprovecho la ocasión para saludarle.

Atentamente,

PhD. Heyddy Calderón.
Directora
IGG-CIGEO/UNAN-Managua.

Cc. Archivo ef.

¡A la libertad por la Universidad!

www.igg.unan.edu.ni +505 2277 0621 | +505 2270 3983 |Apartado postal: A-131| recepcion@igg.unan.edu.ni Rotonda Universitaria Rigoberto López Pérez, 200 mts al Este. Universidad Nacional Autónoma de Nicaragua

Resumen

El agua es uno de los recursos naturales más valiosos e indispensables. Siendo el agua subterránea la parte principal del suministro de agua en regiones con problemas de sequía. A medida que crece la demanda de agua en San Juan de Limay, crece la necesidad de conocer el potencial de aguas subterráneas en la zona.

Esta investigación tuvo como objetivo principal delimitar zonas con favorabilidad hidrogeológica en el municipio de San Juan de Limay, mediante el Proceso de Análisis Jerárquico (AHP) basado en el conocimiento y opinión de expertos utilizando un modelo de sistema de información geográfica (SIG).

El principal propósito de la metodología AHP es apoyar a los tomadores de decisiones en la selección de la mejor alternativa para la aplicación de métodos futuros, utilizándose como una herramienta sencilla para la evaluación de favorabilidad hidrogeológica. Esta metodología puede ser aplicada en regiones con escasez de datos, ahorrando tiempo y costos.

La integración de las capas temáticas indicó que la geología, calidad del agua, topografía, textura del suelo, lineamientos y drenaje juegan un papel crucial en la delimitación de zonas con favorabilidad hidrogeológica, brindando como resultado un mapa clasificado en 5 clases: Favorabilidad muy alta, Favorabilidad alta, Favorabilidad Moderada, Poca favorabilidad y No favorable.

La investigación revela que aproximadamente el 12.83% del municipio posee una favorabilidad muy alta, 26.80% zonas con una favorabilidad alta, 30.71% zonas con favorabilidad moderada y las zonas favorablemente bajas o no potenciales se observan en un 23,34% y 6, 32% respectivamente.

Palabras claves: Favorabilidad hidrogeológica, sistema de información geográfica (SIG), AHP, aguas subterráneas, San Juan de Limay.

INDICE

1. CAPIT	ГULO I	1
1.1 INT	RODUCCIÓN	1
1.2 PLA	ANTEAMIENTO DEL PROBLEMA	2
1.3 JUS	STIFICACIÓN	3
1.4 OB.	JETIVOS	4
1.4.1	Objetivo general	4
1.4.2	Objetivos específicos	4
1.5 LO	CALIZACIÓN DEL ÁREA DE ESTUDIO	5
1.5.1	Clima	7
1.5.2	Hidrografía	7
2. CAPÍ	TULO II	8
2.1 MA	RCO REFERENCIAL	8
2.1.1	Antecedentes	8
2.1.2	Marco geotectónico de América Central	10
2.1.3	Geología regional de Nicaragua	11
2.2 Mar	rco Conceptual	12
2.2.1	Conceptos de hidrogeología	12
2.2.1.1	Acuíferos en formaciones rocosas	12
2.2.1.2	2 Acuíferos en sedimentos no consolidados	13
2.2.2	Ley de Darcy	14
2.2.2.1	Gradiente hidráulico (i)	14
2.2.3	Parámetros hidráulicos de medios acuíferos:	14
2.2.3.1	l Porosidad	14
2.2.3.2	2 Conductividad hidráulica (K)	15
2.2.3.3	3 Transmisividad (T)	16
2.2.3.4	4 Coeficiente de almacenamiento (S)	16

	2.2.4	Co	ontaminación del agua subterránea	17
	2.2	2.4.1	Arsénico en aguas subterráneas	17
	2.2.5	Hi	drología	17
	2.2	2.5.1	Variabilidad climática	18
	2.2.5.	1.1	Sequía	19
	2.2.6	Fa	vorabilidad hidrogeológica	19
2	2.3	HIPÓ'	TESIS	20
3.	CA	APÍTU	TLO III	21
3	3.1	MAR	CO METODOLÓGICO	21
	3.1.1	Ti	po de Estudio	21
	3.1.2	Áı	rea de estudio	21
	3.1.3	Uı	niverso y Muestra	21
	3.1.4	Va	ariables y operaciones de variables.	22
	3.1.5	M	étodos, técnicas e instrumentos de recolección de datos e información	23
	3.1.6	Pr	ocedimientos para la recolección de datos e información	24
	3.1	1.6.1	Etapa de gabinete	24
	3.1	1.6.2	Etapa de campo	24
	3.1.7	Pla	an de análisis y procesamiento de datos	29
	3.1	1.7.1	Análisis y procesamiento de datos	30
	3.1.8	Ín	dice de favorabilidad de Aguas Subterráneas (GWFI)	38
4.	CA	APÍTU	ILO IV	40
4	4.1	ANÁI	LISIS Y DISCUSIÓN DE RESULTADOS	40
	4.1.1	Ge	eología local	40
	4.1.2	Hi	drogeología	49
	4.1	1.2.1	Balance Hídrico Climático	49
	4.1	1.2.2	Inventario de pozos	52
	4 1	1.2.3	Superficie piezométrica v dirección de fluio	52

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

		4.1.2	2.4	Parámetros físico-químicos	55
	4.	1.3	Co	ncentraciones de arsénico	61
	4.	1.4	Índ	lice de Precipitación Estandarizado (SPI)	64
	4.	1.5	An	álisis de Favorabilidad Hidrogeológica	66
		4.1.5	5.1	Selección de capas temáticas	66
		4.1.5	5.2	Capas temáticas	67
		4.1.5	5.3	Proceso de Análisis Jerárquico (AHP)	70
		Cap	as te	máticas reclasificadas	74
		4.1.5	5.4	Generación del mapa de favorabilidad hidrogeológica	80
	4.	1.6	De	limitación de zonas hidrogeológicamente favorables	80
	4.	1.7	Fav	vorabilidad Hidrogeológica y Variabilidad Climática	81
5.		CAP	ÍTU.	LO V	83
	5.1	C	ONC	LUSIONES	83
	5.2	Rl	ECO	MENDACIONES	85
	5.3	Rl	EFEI	RENCIAS	86
6		ΔΝΈ	XO	2	92

INDICE DE ILUSTRACIONES

Ilustración 1.1 Drenaje	7
Ilustración 2.1 Acuífero fracturado	13
Ilustración 2.2 Acuífero poroso	13
Ilustración 2.3 Coeficiente de almacenamiento	16
Ilustración 3.1 Reconocimiento geológico superficial	25
Ilustración 3.2 Pozo Perforado	26
Ilustración 3.3 Mediciones de arsénico in situ	27
Ilustración 3.4 Pruebas in situ de parámetros físico-químicos	28
Ilustración 3.5 Conceptualización del TPI	32
Ilustración 3.6 Ejemplo de transformación de una distribución Gamma ajustada a una	ì
distriubución normal estandarizada	35
Ilustración 3.7 Procedimiento para el cálculo del Índice Estandarizado de Precipitacion	ón (SPI)
	36
Ilustración 3.8 Escala de comparación de Saaty	38
Ilustración 4.1 Afloramiento de material andesítico	42
Ilustración 4.2 Afloramiento de andesita porfíritica	43
Ilustración 4.3 Muestra de dacita tobácea	44
Ilustración 4.4 Aflroramiento de rocas basálticas	45
Ilustración 4.5 Capa de material aluvial	46
Ilustración 4.6 Cuaternario aluvial	46
Ilustración 4.7 Columna litoestrátigrafica generalizada del municipio de San Juan de	Limay
	48
Ilustración 4.8 Representación de las variables climáticas en el área de estudio	50
Ilustración 4.9 Balance climático.	50
Ilustración 4.10 Distribución de parámetros físico-químicos	58
Ilustración 4.11 Índice Estandarizado de Precipitación (SPI)	65
Ilustración 4.12 Metodología AHP	66
Ilustración 4.13 Porcentaje de zonas con favorabilidad de aguas subterráneas	80

INDICE DE MAPAS

Mapas 1.1 Mapa de ubicación del área de estudio	6
Mapas 2.1 Mapa Téctonico de América Central	10
Mapas 2.2 Mapa de las Provincias Geológicas de Nicaragua	11
Mapas 4.1 Mapa Geológico	47
Mapas 4.2 Mapa Piezométrico del área de estudio	54
Mapas 4.3 Mapa de concentraciones de Arsénico (μg/L)	63
Mapas 4.4 Litología	74
Mapas 4.5 Concentraciones de arsénico (µg/L)	75
Mapas 4.6 TPI	76
Mapas 4.7 Textura del suelo-Capacidad de infiltración	77
Mapas 4.8 Densidad de Lineamiento	78
Mapas 4.9 Densidad de Drenaje	79
Mapas 4.10 Mapa de Favorabilidad Hidrogeológica	82
INDICE DE TABLAS	
Tabla 2.1 Valores de porosidad	15
Tabla 2.2 Clasificación según el parámetro de conductividad hidráulica	15
Tabla 3.1 Matriz de comparación por pares (MOVI)	22
Tabla 3.2 Instrumentos de recolección de datos	23
Tabla 3.3 Información y proceso del inventario de pozos	26
Tabla 3.4 Esquema metodológico del procesamiento de datos	29
Tabla 3.5 Valores del Índice Estandarizado de Precipitación (SPI)	37
Tabla 4.1 Datos climáticos estación Condega (2002-2020)	51
Tabla 4.2 Inventario de pozos	53
Tabla 4.3 Parámetros físico-químicos	57
Tabla 4.4 Comparación de los parámetros físico-químicos con valores recomendados	59
Tabla 4.5 Comparación de los parámetros físico-químicos con valores recomendados	60
Tabla 4.6 Inventario de pruebas de concentraciones de arsénico in situ	62
Tabla 4.7 Orden de la matriz RCI	70
Tabla 4.8 Valores de CI y CR Obtenidos	71
Tabla 4.9 Matriz de comparación por pares para el proceso AHP	72

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

Tabla 4.10 Pesos normalizados y ponderados para capa temática
Tabla 4.11 Rankings y pesos normalizados para cada subclase
Tabla 6.1 Concentraciones de arsénico San Juan de Limay
INDICE DE ECUACIONES
Ecuación 2.1 Ley de Darcy
Ecuación 2.2 Gradiente Hidráulico
Ecuación 2.3 Transmisividad
Ecuación 3.1 TPI
Ecuación 3.2 Densidad de Lineamiento
Ecuación 3.3 Densidad de Drenaje
Ecuación 3.4 GWFI
Ecuación 4.1 Relación de Consistencia
Ecuación 4.2 Índice de Consistencia
INDICE DE ANEXOS
Anexo 6.1 Datos de concentraciones de arsénico
Anexo 6.2 Cálculo de Índice de precipitación estandarizado
Anexo 6.3 Mapa de distribución de sequía de Nicaragua (2019)112

1. CAPÍTULO I

1.1 INTRODUCCIÓN

Nicaragua, es un país especialmente privilegiado en cuanto a recursos hídricos. A pesar de ello, la contaminación de los recursos hídricos superficiales y subterráneos ha tenido un gran impacto en la disponibilidad, debido a variaciones espaciales y temporales en su distribución (FAO, 2007).

Según (Rahmati et al., 2015), el agua es uno de los recursos naturales más valiosos e indispensables. Siendo el agua subterránea la parte principal del suministro de agua en regiones con problemas de sequía.

El presente trabajo investigativo se localiza en el municipio de San Juan de Limay, Departamento de Estelí, donde la ocurrencia de aguas superficiales se da efímeramente y las sequías son recurrentes; siendo así de gran relevancia tener conocimiento sobre los recursos existentes de aguas subterráneas, convirtiéndose en un tema relevante de investigación especialmente durante el déficit hídrico en períodos de sequía.

La investigación tiene como objetivo realizar un análisis hidrogeológico mediante un mapa de favorabilidad, con el propósito de delimitar zonas con potencial hidrogeológico. Desde el punto de vista de la exploración de aguas subterráneas, el término favorabilidad o potencial de aguas subterráneas se puede definir como la posibilidad de presencia de agua subterránea en un área, permitiendo la eficiencia de la exploración de este recurso (Bernardes et al., 2017; Rahmati et al., 2015).

Siendo de suma importancia realizar un análisis que nos permita optimizar la elección de sitios para estudios detallados, que implican una inversión económica importante y la ubicación de futuras perforaciones, que ayuden a contribuir a la generación e intercambio de información relacionada al potencial hídrico de San Juan de Limay, y apoyar al desarrollo económico y aumento de la resiliencia ante eventos climáticos.

1.2 PLANTEAMIENTO DEL PROBLEMA

Centroamérica dispone de una gran riqueza hídrica suficiente para satisfacer sus necesidades, pero en general, aún presenta déficit en el acceso al agua. Esta riqueza hídrica presente urge de modelos de gestión de agua que permitan el uso eficiente como su conservación (Global Water Partnership (GWP), 2017).

En un país como Nicaragua, las variaciones y distribuciones en los regímenes de precipitaciones y sus vertientes, humedad, temperatura y otros factores, constituyen un factor determinante en la disponibilidad de agua y en la calidad de la misma (Cortez et al., 2018).

Esta situación es más dramática en la zona del corredor seco, que comprende la zona norte-central del país. Dentro del corredor seco centroamericano se presentan fenómenos climáticos comprendiendo un 30.1% del territorio de zonas afectadas por sequía (Bendaña, 2012). Así mismo, San Juan de Limay se encuentra ubicado dentro del corredor seco, siendo una de las zonas más secas del centro-norte, por lo cual podría ser una de las más afectadas por la sequía teniendo altos índices de escasez de agua.

La problemática en el municipio es la escasez de agua y la poca información sobre las condiciones, distribución y calidad de las aguas subterráneas, las cuales se ven influenciada por la presencia de sequías presentes en el área, lo que dificulta la elaboración de planes de manejo y un uso racional de aguas subterráneas.

1.3 JUSTIFICACIÓN

En Nicaragua, la sequía afecta un área considerable de aproximadamente de 39 000 km² del territorio nacional, una superficie mayor a la extensión de la República de El Salvador.

En un municipio caracterizado por formar parte del Corredor Seco Centroamericano, el agua superficial no está disponible durante todo el año, por lo tanto, la población tiende a depender más de los recursos hídricos subterráneos para su uso y consumo (Bendaña, 2018).

Por consiguiente, esta investigación servirá de base para optimizar la delimitación de áreas para aplicar futuros estudios con un bajo nivel de riesgo y más rentable en el municipio, siendo de suma importancia para los pobladores de manera que se pueda satisfacer la creciente demanda de agua en San Juan de Limay.

1.4 **OBJETIVOS**

1.4.1 Objetivo general

Analizar la favorabilidad hidrogeológica considerando variabilidad climática para determinar zonas factibles para perforación de pozos en San Juan de Limay, Estelí.

1.4.2 Objetivos específicos

- Caracterizar geológicamente el municipio de San Juan de Limay, Estelí.
- Evaluar la calidad del agua presente en el área de estudio mediante parámetros físico-químicos.
 - Mapear las concentraciones de arsénico en el municipio de San Juan de Limay.
- Delimitar áreas hidrogeológicamente favorables considerando índices de sequía mediante datos climáticos en el período de 2002-2020.

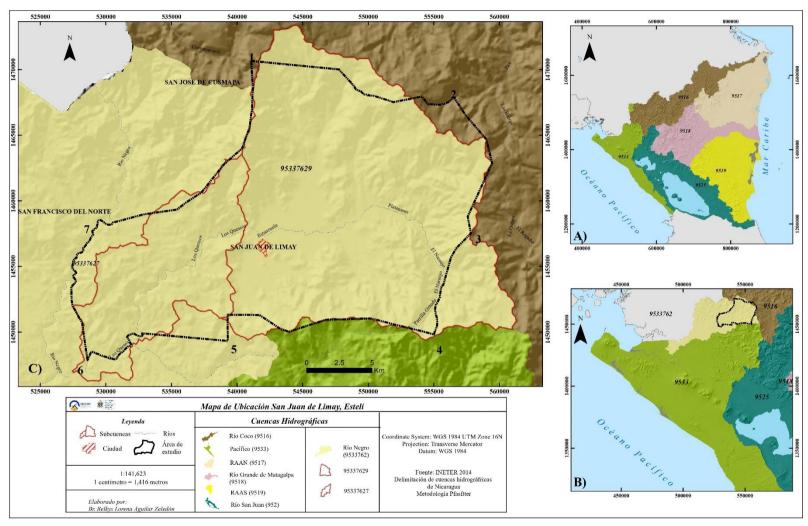
1.5 LOCALIZACIÓN DEL ÁREA DE ESTUDIO

El municipio de San Juan de Limay está situado en el departamento de Estelí, este último ubicado en la Región de la Zona Norte del país.

Está ubicado entre las coordenadas 13° 10′ de Latitud norte y 86° 36′ de Longitud oeste, con una altura de 280 msnm. Posee una extensión territorial de 428 km² siendo el segundo municipio más grande luego de Estelí.

Se encuentra a una distancia de 195 km² al norte de Managua, y a 45 km² de la cabecera departamental Estelí.

Sus límites municipales son:


- ♣ Al norte con el Municipio de Pueblo Nuevo
- ♣ Al sur con el Municipio de Achuapa
- ♣ Al este con el Municipio de Estelí
- ♣ Al oeste con los municipios de San Francisco del Norte (Chinandega) y Cusmapa (Madriz).

Vértices	X	Y
1	541083	1470654
2	547768	1470017
3	556532	1467888
4	559456	1462875
5	555020	1449814
6	539294	1449326
7	528601	1447872
8	529533	1458546

Fuente: Elaboración propia

Mapas 1.1

Mapa de ubicación del área de estudio

a) Mapa de Unidades hidrográficas Nivel 4, b) Unidad hidrográfica del Pacífico (9533), dentro de ella se encuentra ubicada la cuenca del Río Negro (9533762), c) Unidades nivel 8 (95337629) y (95337627), ubicadas dentro del municipio de San Juan de Limay, Estelí.

1.5.1 Clima

El clima es de sabana tropical cálido seco de altura con temperaturas que oscilan entre 24°C y 34°C. Es una de las zonas más secas y áridas del país con un índice de precipitación media anual de 800-1200 mm de agua, bajo el régimen de lluvia estacional irregular que se inicia en el mes de Mayo y finaliza en Octubre, presentando un período de muy escasa precipitación denominado Canícula (BVSDE y OPS, 2020).

1.5.2 Hidrografía

El municipio se localiza en la unidad hidrográfica de El Pacífico (9533), de la cual se subdivide la unidad hidrográfica (Río Negro, 9533762), con una longitud de 77 km (INETER et al., 2014). La unidad Río Negro se subdivide en un nivel 8 en las cuencas (95337629) y (95337627), localizadas en el municipio de San Juan de Limay (Mapa 1.1).

El municipio cuenta con un patrón de drenaje tipo dendrítico (Ilustración 1.1), siendo el curso de agua más significativo el del Río Negro, en el cual desemboca el Río Los Quesos, naciendo de una unión de dos quebradas en la parte alta de las comunidades del municipio de San Juan de Limay, Quebrada El Naranjo y Quebrada Colocondo.

Ilustración 1.1

Drenaje

Fuente: Elaboración propia

2. CAPÍTULO II

2.1 MARCO REFERENCIAL

2.1.1 Antecedentes

Se han realizado estudios a nivel internacional y nacional las cuales dan un aporte significativo a toda la investigación sirviendo de base para caracterizar la zona y realizar un análisis hidrogeológico en el municipio.

González et al. (2019) llevaron a cabo el artículo "Arsenic contamination of rural community Wells in Nicaragua: A review of two decades of experience". Con el fin de evaluar la contaminación de arsénico en el país se combinaron estudios para proporcionar una mejor visión a nivel general de la contaminación de arsénico de las fuentes de agua potable en Nicaragua. Mediante el estudio se detectaron más de 80 comunidades rurales con presencia de arsénico, en las cuales van incluidas comunidades del municipio de San Juan de Limay.

Arulbalaji et al. (2019) realizaron un estudio denominado GIS and AHP Techniques Based delineation of Groundwater potential zones: a case study from Southern Western Ghats, India. Teniendo como objetivo de delinear una zona con potencial de aguas subterráneas de una pequeña cuenca tropical ubicada en el lado occidental de los Ghats occidentales de la India, mediante una combinación de sistemas geográficos y técnicas analíticas de 12 capas temáticas.

Macas-Espinosa y López-Escobar (2018) desarrollaron un caso práctico denominado "Potencial para la exploración de aguas subterráneas en la Demarcación Hidrográfica Puyango Catamayo, Ecuador, utilizando un proceso de análisis jerárquico basado en SIG y teledetección", con el objetivo de aplicar técnicas de sistemas de información geográfica y teledetección para cartografiar áreas potenciales para la exploración de aguas subterráneas;

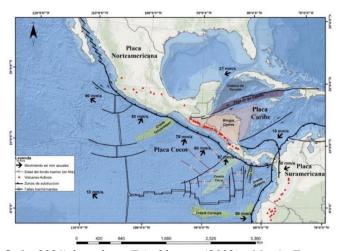
mediante datos primarios de investigación: DEM, imágenes de satélite, distribución espacial de la lluvia y características geológicas.

Chavarria & Martínez (2017) efectuaron una caracterización geológica para el diseño de cosechas de agua en las comunidades de Ocotillo y La Grecia y sus alrededores, considerando estos puntos como críticos de problemáticas de abastecimiento de agua. Aportando información para caracterizar geológicamente la zona.

Schliz, (2009) realizó un análisis geoestructural en las hojas topográficas de Cinco Pinos y San Juan de Limay. Basándose en geometría y cinemática de las estructuras geológicas, lo cual nos brinda un visión más general de la distribución y disposición de las estructuras en la zona.

Madrucci et al. (2008) produjeron un artículo designado *Groundwater favorability map* using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brasil. Con la finalidad de presentar un mapa de favorabilidad de aguas subterráneas en un terreno fracturado de la parte oriental del estado de Sao Paulo, Brasil. Sirviendo como guía para la intergración de información geográfica en capas temáticas mediante metodología de decisión multicriterio.

2.1.2 Marco geotectónico de América Central


América Central conforma la unión entre los márgenes Pacíficos de Norteamérica y Sudamérica (Mapa 2.1). En este extremo se producen diferentes interacciones de placas litosféricas, siendo las principales la subducción de las placas del Coco y Nazca bajo la de Caribe a lo largo de la fosa Mesoamericana a una velocidad de entre 80 y 90 mm/año, y la placa de Caribe se mueve hacia el este respecto a las placas de Norteamérica y Sudamérica a unos 19 mm/año (Álvarez et al., 2019; James, 2020).

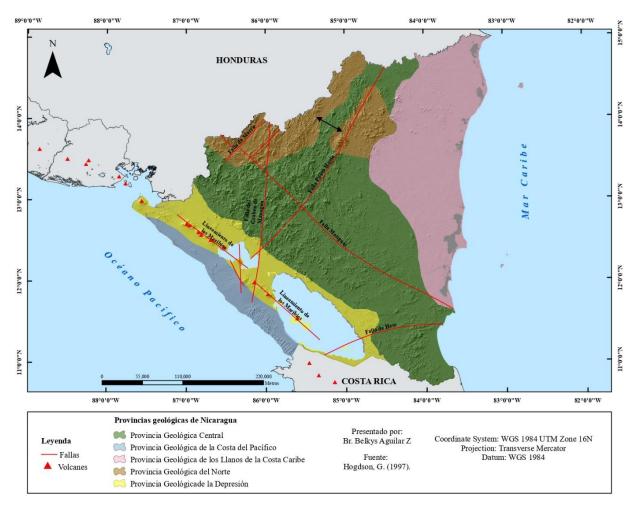
Al norte se localiza el sistema de fallas Motagua-Polochic, la cual ayuda a acomodar el cizallamiento que existe entre las placas de América del norte y placa del Caribe. Al sur se encuentra el bloque Chorotega y el Choco, lo que engloba Costa Rica y Panamá, considerados como un arco de subducción interoceánico (Morán-Zenteno et al., 2009).

Nicaragua está limitada en sus costas por unidades tectónicas muy relevantes, en el Pacífico está limitada por la Plataforma Continental, La Fosa Mesoamericana, Placa Coco y la Placa Nazca, y en la Costa Atlántica se encuentra limitada por la Placa del Caribe y el Banco de Nicaragua (Morán-Zenteno et al., 2009) (Mapa 2.1).

Mapa 2.1

Mapa Tectónico de América Central

Fuente: (Picado & Ortiz, 2021) basado en Frischbutter, (2002) y Morán-Zenteno et al., (2009)


2.1.3 Geología regional de Nicaragua

Nicaragua tiene su origen geológico en la era Paleozoica, la cual culminó con la intensa actividad volcánica del Cuaternario, durante este período Nicaragua sufrió una serie de acontecimientos muy característicos en todas las zonas. Estos eventos geológicos son las particularidades empleadas para la subdivisión del país en diferentes provincias geológicas.

Según sus características litológicas, tectónicas, estratigráficas y geomorfológicas Hodgson (1977) dividió Nicaragua en 5 provincias geológicas (Mapa 2.2).

Mapas 2.2

Mapa de las Provincias Geológicas de Nicaragua

Fuente: (Hodgson, 2000)

2.2 Marco Conceptual

2.2.1 Conceptos de hidrogeología

Aguas subterráneas: Es el agua existente bajo la superficie terrestre almacenada en los poros y fisuras existentes en el suelo y las superficies rocosas, puede ser colectada mediante perforaciones, túneles o galerías de drenaje.

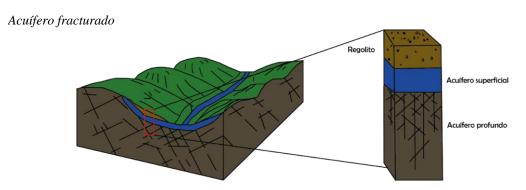
En función de las características de la litología se pueden clasificar:

Acuífero: Es una formación geológica capaz de almacenar y transmitir el agua en cantidades significativas, mediante obras de captación.

Acuífugo: No posee capacidad de circulación ni de retención de agua.

Acuicludo: con presencia de agua en su interior, incluso llegar a la saturación, pero no tiene la capacidad de transmitirla.

Acuitardo: unidad que permite el paso del agua por sus poros, pero no posee la capacidad de ceder grandes caudales.

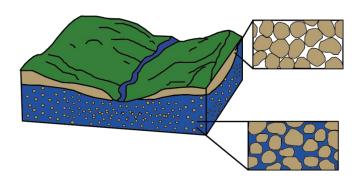

2.2.1.1 Acuíferos en formaciones rocosas

La principal característica es que su permeabilidad es debida fundamentalmente a porosidad secundaria, ya sea por fisuración, disolución o ambos motivos. Estos acuíferos están constituidos por formaciones geológicas consolidadas, cuando presentan un grado de fracturación y/o disolución importante constituyen acuíferos que pueden llegar a presentar permeabilidades altas.

Acuíferos fisurados o fracturados: presenta numerosas fracturas, fisuras, grietas y oquedades ya sea debido a procesos de disolución o la aparición de fracturas de muy diverso origen en materiales insolubles, a través de las cuales circula el agua. Estos acuíferos se forman

sobre una gran variedad de materiales, siendo los de mayor importancia por el volumen de agua que se aprovecha (Geffenberger, 1967) (Ilustración 2.1).

Ilustración 2.1


Fuente: (Molinero, 2005)

2.2.1.2 Acuíferos en sedimentos no consolidados

La principal característica de este tipo de acuíferos es que su permeabilidad es debida fundamentalmente a porosidad primaria intergranular, están constituidos por formaciones geológicas de carácter detrítico.

Ilustración 2.2

Acuífero Poroso

Fuente: (Molinero, 2005)

Acuíferos porosos: cuando están constituidos por materiales sueltos; arenas, gravas, arenisca, etc., encontrándose el agua en el espacio intragranular que queda entre las partículas.

Las características del acuífero están determinadas principalmente por la textura

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

(granulometría) de los materiales y el tipo y cantidad de arcilla que contienen (Geffenberger, 1967) (Ilustración 2.2).

2.2.2 Ley de Darcy

Es la ley básica de la hidrogeología, permitiendo el análisis del flujo hídrico y su comportamiento a través de medios porosos (Freeze & Cherry, 1979).

$$Q = K.A \frac{\Delta h}{\Delta L}$$
 Ecuación 2.1

Donde:

Q= caudal (
$$L^3/T$$
) $\Delta h/\Delta L$ = Gradiente hidráulico

$$K = Conductividad hidráulica (L^2/T)$$
 $A = Área transversal (L^2)$

2.2.2.1 Gradiente hidráulico (i)

Se define como la pérdida de energía experimentada por unidad de longitud recorrida por el agua; es decir, representa la pérdida o cambio de potencial hidráulico por unidad de longitud, medido en el sentido del flujo del agua (Otálvaro, 1999) (Ecuación 2.2).

$$i = \frac{\Delta h}{\Delta L}$$
 Ecuación 2.2

2.2.3 Parámetros hidráulicos de medios acuíferos:

2.2.3.1 Porosidad

Es el porcentaje en volumen del suelo que no es ocupado por partículas sólidas, son espacios que alojan agua, gases y materia orgánica. También se habla de porosidad primaria y secundaria. Denominando *porosidad primaria* la cual se debe a la matriz de la roca o suelo; y *porosidad secundaria* la cual puede ser debida a fenómenos secundarios de disolución o controles regionales de fracturamiento (Freeze & Cherry, 1979).

Tabla 2.1

Valores de porosidad

Depósitos no			
consolidados	n (%)	Rocas	n (%)
Grava	25-40	Basalto fracturado	5-50
Arena	25-50	Caliza kárstica	5-50
Limo	35-50	Arenita	5-30
Arcilla	40-70	Caliza, dolomita	0-20
		Lutita	0-10
		Roca cristalina fracturada	0-10
		Roca cristalina masiva	0-5

Fuente:(Freeze & Cherry, 1979)

2.2.3.2 Conductividad hidráulica (K)

Es la capacidad que tiene un material de transmitir un fluido, en Este caso el agua. (Tabla 2).

Los valores de conductividad hidráulica generalmente varían espacialmente dentro de una formación geológica.

 Tabla 2.2

 Clasificación según el parámetro de conductividad hidráulica

Permeabilidad en (m/día)	104	10^{3}	102	10^{1}	1	10-1	10-2	10-3	10-4	10-5	10-6
Tipo de terreno	11100000	avas ipias	mezcl	na limpia; a de grava y arena		Arena fina, arena arcillosa, mezcla de arena, limo y arcilla; arcillas estratificadas			Arcillas no meteorizadas		
Clasificación	Sapacidad de Drenan bien			Acuifero pobre			Impermeable				
Capacidad de drenaje			Drenan mal		No dren	an					

Fuente: (Custodio & Llamas, 1983)

2.2.3.3 Transmisividad (T)

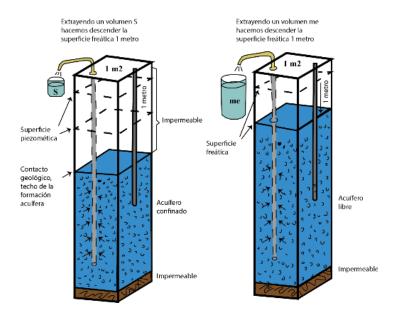
Es la medida de la capacidad de un acuífero para conducir agua o transmitir agua, definiéndose como el volumen de agua que pasa por unidad de tiempo, a través de una franja vertical (Ordoñez, 2011).

$$T = b * K$$
 Ecuación 2.3

Dónde:

T= Transmisividad del acuífero (L^2/T)

b= Espesor saturado del acuífero (L)


K= Conductividad hidráulica (L/T)

2.2.3.4 Coeficiente de almacenamiento (S)

Cantidad de agua que un acuífero confinado proveerá del almacenamiento por unidad de área por metro de cambio en la carga hidráulica (Sanchez, 2009).

Ilustración 2.3

Coeficiente de almacenamiento

Fuente: (Sanchez, 2009)

2.2.4 Contaminación del agua subterránea

Desde el punto de vista de la calidad del agua, la degradación del agua subterránea a menudo requiere largos períodos de tiempo para que los contaminantes sean depurados de acuíferos contaminados. La contaminación del agua subterránea a menudo hace que los acuíferos o partes de los acuíferos sean dañados más allá de la reparación (Freeze & Cherry, 1979).

2.2.4.1 Arsénico en aguas subterráneas

La mayor parte de acuíferos con contenidos altos de arsénico tienen un origen ligado a procesos geoquímicos naturales, las cuales generan afectaciones en grandes áreas. El origen natural de arsénico está relacionado con ambientes geológicos muy diferentes: metasedimentos con filones mineralizados, formaciones volcánicas, formaciones volcano-sedimentarias, distritos mineros, sistemas hidrotermales actuales, cuencas aluviales terciarias y cuaternarias (Lillo, 2008).

Conforme a las recomendaciones de las Normas CAPRE (1994) y las Normas internacionales para el agua potable de la Organización Mundial de la Salud (2012), la concentración máxima admisible de arsénico es de 0,01 µg/l. EL Centro internacional de investigaciones sobre el cáncer (CIIC), clasifica los compuestos inorgánicos de arsénico en el grupo I (cancerígenos para el ser humano) basándose en la existencia de pruebas suficientes de su capacidad cancerígena en seres humanos. Con frecuencia, su concentración está estrechamente relacionada con la profundidad del pozo.

2.2.5 Hidrología

El clima es uno de los factores ambientales que incide de manera recurrente o cíclica, ocurriendo anomalías climáticas que impactan en diversos grados y formas, en los sistemas.

A través del tiempo el clima presenta ciclos o fluctuaciones de diversas duraciones, en diferentes años los valores de las variables climatológicas (temperatura del aire, precipitaciones, etc.) fluctúan por encima o por debajo de lo normal, las oscilaciones alrededor de los valores normales, se conoce como variabilidad climática y su valoración se logra mediante la determinación de las anomalías.

2.2.5.1 Variabilidad climática

Según la IPCC (2001), la variabilidad climática se refiere a las variaciones en el estado medio y otros datos estadísticos del clima en todas las escalas temporales y espaciales más allá de fenómenos meteorológicos determinados. La variabilidad se puede deber a procesos internos naturales dentro del sistema climático (variabilidad interna) o a variaciones en los forzamientos externos antropogénicos (variabilidad externa).

La variabilidad climática en América Central y el Caribe se traduce en la ocurrencia de sequías e inundaciones provocadas por tormentas tropicales o huracanes. Los años relativamente secos de América Central están asociados con anomalías atmosféricas de circulación general, como las que ocurren durante los eventos de El Niño Oscilación Sur (ENOS).

Nicaragua es particularmente vulnerable a los efectos de la variabilidad climática debido a su ubicación en la región intertropical, zona de convergencia siendo unas economías más expuestas a las amenazas climáticas. Teniendo una parte del territorio nicaragüense a ser propenso de sufrir graves sequías, especialmente a lo largo del "Corredor Seco" de Centroamérica. Por todas estas razones, Nicaragua es una región altamente vulnerable a su clima actual y a los efectos del cambio climático. Incluso puede aumentar los peligros existentes o provocar otros nuevos (Solé et al., 2016).

2.2.5.1.1 Sequía

La Organización para la Agricultura y la Alimentación (FAO, 1983) de las Naciones Unidas define un peligro de sequía como *el porcentaje de años en que las cosechas fallan por falta de humedad*.

Según Bonilla (2014), en Centroamérica la sequía no se asocia con períodos prolongados (anuales) sin lluvia, como si sucede en algunos lugares en del mundo sino con factores como los siguientes:

- Prolongación del "veranillo" o "canícula, la cual divide en dos partes la estación de lluvias sobre la vertiente del Pacífico.
- Distribución de las precipitaciones durante la estación lluviosa en pocos eventos de lluvia, entre períodos prolongados de días secos.
- Finalización temprana de la estación lluviosa, incrementado la desecación del suelo y no permite la recuperación de fuentes de agua.

En áreas ubicadas dentro del corredor seco de Nicaragua, se encuentran en áreas secas susceptibles al déficit hídrico, cualquier disminución posterior en la calidad de los recursos hídricos afectará en gran medida la disponibilidad de agua.

2.2.6 Favorabilidad hidrogeológica

El término de aguas subterráneas desde el punto de vista de la exploración de aguas subterráneas se define como la posibilidad de presencia de agua en un área determinada (Bernardes et al., 2017; Rahmati et al., 2015).

Los enfoques tradicionales de exploración de agua subterránea a través de medios de perforación, hidrogeológicos, geológicos y geofísicos son extremadamente costosos, consumen mucho tiempo y requieren mano de obra calificada. El advenimiento del sistema de

información geográfica (GIS) y la teledetección han proporcionado otro medio eficaz en función de costo y tiempo de mapeo del potencial hidrogeológico.

Aunque las imágenes de satélite no pueden detectar directamente el agua subterránea. las características de la superficie preparadas a partir de tales mapas o imágenes (por ejemplo accidentes topográficos, geología) actúan como indicadores de la predicción del potencial de las aguas subterráneas (Bernardes et al., 2017).

2.3 HIPÓTESIS

En el área de estudio existen zonas con condiciones geológicas e hidrogeológicas adecuadas que favorezcan la ocurrencia de agua subterránea en el municipio para aprovecharla mediante pozos de captación, que contribuirían a suplir la demanda de agua en las comunidades de San Juan de Limay.

3. CAPÍTULO III

3.1 MARCO METODOLÓGICO

3.1.1 Tipo de Estudio.

El enfoque de la investigación es de carácter Mixto.

Según Hernández (2014) la meta de la investigación mixta es utilizar las fortalezas de ambos tipos de indagación, combinándolos y tratando de minimizar sus debilidades potenciales.

Se denominó un enfoque Mixto debido a la integración de los métodos, e instrumentos cualitativos y cuantitativos en el proceso de recolección de datos. Utilizando datos numéricos para realizar información de modelación geoespacial y llevando a cabo una recolección de información y análisis de datos.

3.1.2 Área de estudio.

Línea de investigación del área de estudio.

Exploración y explotación de recursos naturales.

Área de conocimiento científico.

Prospección de recursos naturales

Tema de Interés.

Evaluación del recurso hídrico

3.1.3 Universo y Muestra.

Universo. El universo en la presente investigación está constituido por el municipio deSan Juan de Limay, siendo esta el área de estudio.

Muestra. Como muestra en la investigación se toma la morfología del área de estudio, representadas por la geología, hidrogeología y topografía de la zona.

3.1.4 Variables y operaciones de variables.

Tabla 3.1

Matriz de comparación por pares (MOVI)

Objetivos específicos	Variable conceptual	Subvariable o dimensiones	Variable operativa indicador	Técnicas de recolección de datos e información
Caracterizar geológicamente el municipio de San Juan de Limay,	Características geológicas	Litología Fallas, fracturas	Tipo litología y unidades geológicas. fallas	Ficha de recolección de
Estelí.		Lineamiento	lineamientos pendiente, valles	datos geológicos
Evaluar la calidad del agua	Calidad del agua subterránea	Nivel del agua subterránea Parámetros	Distribución espacial de pozos	Ficha inventario de
presente en el área de estudio	Subterranca	fisicoquímicos del agua	Nivel estático del agua,	pozos.
mediante parámetros físico- químicos.		subterránea Capacidad de transmisión de agua Capacidad de infiltración	pH, conductividad eléctrica, Conductividad hidráulica	Ficha de prueba de infiltración.
Mapear las concentraciones de	Distribución de arsénico	Zonas con presencia de arsénico	Concentración de arsénico (µg/l)	Ficha técnica
arsénico en el municipio de San	arsenco	arsenico	arsemeo (µg/1)	
Juan de Limay.				
Delimitar áreas favorables	SPI	Variabilidad climática	Áreas con incidencia de sequía	Microsoft Excel
hidrogeológicamenteconsiderando	Favorabilidad	Zonas con potencial de	Distribución espacial de	Software
índices de sequía mediante datos climáticos.	hidrogeológica	aguas subterráneas.	las zonas con potencial de aguas subterráneas	ArcGis

Fuente: Elaboración propia

3.1.5 Métodos, técnicas e instrumentos de recolección de datos e información.

La recolección de datos en campo se realizó mediante diversos tipos específicos, que nos brindarán la información y características de cada variable (Tabla 3.2).

Tabla 3.2 *Instrumentos de recolección de datos*

Área de estudio	Método	Instrumento/equipo
	Caracterización litológica superficialmente, descripción de materiales presentes en la zona Medición de datos piezométricos	Ficha de descripción Libreta de campo GPS, brújula Lupa, piqueta Sonda para nivel del agua
Geología-Hidrogeología	Parámetros físico-químicos Prueba de infiltración	Medidor HANNA Permeámetro de Guelph
	Concentraciones de arsénico	ARSENATOR
	SPI	Software Standard Precipitation Index Generator
	Análisis multicriterio Integración de capas temáticas	Microsoft Excel Software ArcGis

Fuente: Elaboración propia

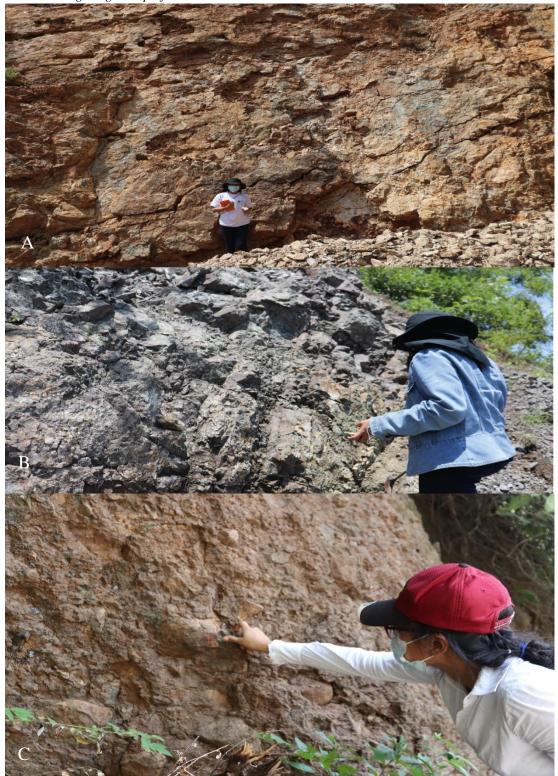
3.1.6 Procedimientos para la recolección de datos e información.

3.1.6.1 Etapa de gabinete

Consistió en recopilar y realizar revisión bibliográfica, antecedentes de estudios previos en el área y el tema de investigación, sirviendo de base primordial informes, artículos, mapas (topográficos, geológicos e hidrogeológicos), creación de una base de datos geológicos, modelos digitales de elevación del área, datos climáticos obtenidos de la estación meteorológica de Condega, de INETER en el período de (1990-2018), para conocer las condiciones climáticas.

A su vez se recopiló información acerca de la metodología implementada para generar el mapa favorabilidad hidrogeológica, mediante el análisis de decisión multicriterio conocido como proceso de análisis jerárquico (AHP).

3.1.6.2 Etapa de campo


Consistió en corroborar la información obtenida en gabinete, llevando a cabo un reconocimiento de campo para localizar puntos de interés en el municipio para proceder con el inventario de pozos y levantamiento geológico, con la ayuda de mapas previamente elaborados, planificando así una ruta de trabajo.

3.1.6.2.1 Reconocimiento geológico superficial

Se realizó con el objetivo de corroborar la información litológica y estructural encontrada en los mapas geológicos del área, procediendo a ubicar puntos de interés que presentaran buenos afloramientos para realizar el levantamiento de datos, identificando y describiendo el tipo de material y realizando un análisis para comprender la dinámica.

Ilustración 3.1

Reconocimiento geológico superficial

Localización: A: Mina La Grecia, B: Com. La Naranja, C: Com. La Grecia

3.1.6.2.2 Inventario de pozos

Se hizo un levantamiento de datos acerca de los pozos (perforados, excavados) ubicados en todo el municipio, los cuales sirven de base para realizar el mapa piezométrico, se visitó cada uno de los puntos para obtener los datos necesarios, como lo es:

Tabla 3.3Información y proceso del inventario de pozos

Coordenadas del pozo (X,Y)	Profundidad del nivel estático del agua, se
Cota de nivel del terreno	realizó de manera manual con la sonda de
Características del pozo o fuente de agua y	nivel y con un sensor ultrasónico
su uso	Profundidad del nivel del pozo

Fuente: Elaboración propia

Ilustración 3.2

Pozo Perforado

Comunidad La Palma, coordenadas E 5283066, Y 1453066

3.1.6.2.3 Mediciones de concentraciones de arsénico

Con el propósito de conocer los rangos de concentraciones de arsénico que hay en el municipio, se tomaron muestras de agua para realizar las pruebas in situ con el medidor digital portátil.

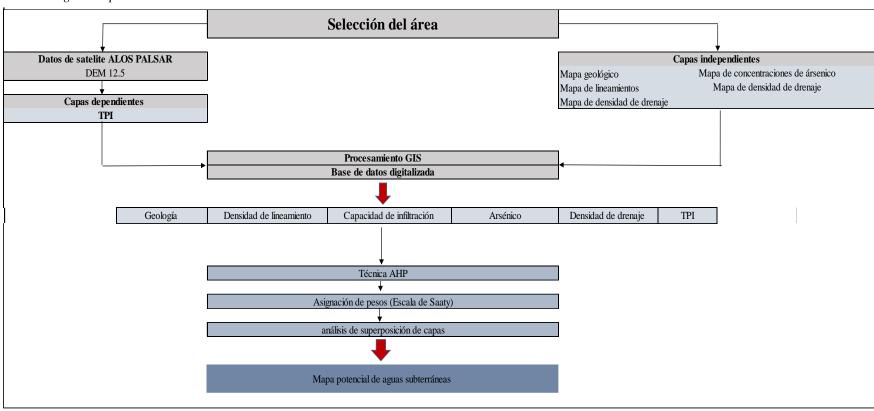
Ilustración 3.3 *Mediciones de arsénico in situ*

Pozo Perforado, Coordenadas: E 541968, Y 1456407

3.1.6.2.4 Pruebas físico - químicas

Se tomaron muestras de agua en los pozos previamente inventariados, estás fueron realizadas con el medidor multiparametro HANNA HI 9829 el cual nos brindó los parámetros para conocer la calidad de las aguas tales como el pH, ORP (Potencial de Oxidación-Reducción), Conductividad Eléctrica, Iones de Amonio, Cloruro, Oxígeno Disuelto (como % de concentración), resistividad, TDS (Sólidos Totales Disueltos), Salinidad y gravedad especifica de agua de mar.

Ilustración 3.4


Pruebas in situ de parámetros físico-químicos

A: Coordenadas E 554217, Y145797, B: Coordenadas E 5283066, Y 1453066

3.1.7 Plan de análisis y procesamiento de datos

Tabla 3.4Esquema metodológico del procesamiento de datos

Fuente: Elaboración propia

3.1.7.1 Análisis y procesamiento de datos

3.1.7.1.1 Interpretación geológica

Se procedió a realizar una descripción un poco más a detalle de cada punto muestreado, describiendo su composición, textura, origen y minerales que le conforman. Los datos recolectados sirvieron para corroborar la información obtenida en gabinete y plasmarlos en una columna lito-estratigráfica generalizada del municipio, la cual se realiza en el programa Golden Software Strater.

El mapa geológico se elaboró teniendo como base datos de fuentes oficiales, y mediante la información litológica levantada en campo.

Luego fueron reclasificadas cada una de las subclases, en una matriz según la relevancia que posee en el aspecto hidrogeológico, reclasificándolas en formato ráster en el software ArcGis.

3.1.7.1.2 Mapa Piezométrico

Se recolectaron datos puntuales de las cargas hidráulicas mediante el inventario de pozos en campo, estas fueron colocadas en una base de datos con sus atributos espaciales y con el cálculo de las cargas hidráulicas en Microsoft Excel. Para comenzar el procesamiento geo estadístico se creó un shapes de puntos en ArcGis, se procedió a seleccionar el tipo de interpolación a utilizar en este caso fue Kriging, el cual nos brindó un modelo de superficie que nos permitió extraer curvas con la herramienta de geoprocesamiento 3D, Contour, las cuales se definen como isolineas que representan los niveles de las aguas y así determinar la dirección del flujo subterráneo en la zona. Por último, se diseñaron las características cartográficas del mapa.

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

3.1.7.1.1 Análisis de pruebas físico-químicas in sitú

Se realizó el procedimiento recolectando muestras de agua de cada pozo muestreado, se procedió a analiza con la sonda multiparametro HANNA HI 9829 la cual es ideal para mediciones en terreno y nos puede mostrar desde 1 a 12 parámetros simultáneamente; con los datos obtenidos se realiza una interpretación y caracterización de las aguas.

El análisis se llevó a cabo de acuerdo a los parámetros establecidos en la NTOON 05007-98 (Publicado en La Gaceta N° 30, el 11 de Febrero del 2000), siendo estas del "Tipo 1". Estos parámetros se establecieron como una guía para alcanzar niveles de seguridad en la contaminación de agua a nivel nacional.

3.1.7.1.2 Mapa de concentraciones de arsénico

Se tomaron muestras in situ en cada pozo visitado en campo, estas fueron procesadas a tablas en Excel para su procesamiento en ArcGis, se crearon shapes de puntos los que se analizaron con la herramienta de interpolación IDW, los datos obtenidos fueron reclasificados con la herramienta Reclasificar de ArcGis, en rangos de concentraciones presentes en el municipio, permitiendo conocer la distribución de arsénico en el área.

3.1.7.1.3 Índice de Posición topográfica (TPI)

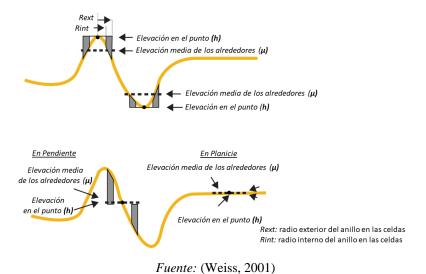
El índice de posición topográfica nos permitió describir y clasificar de acuerdo a aspectos morfológicos del terreno mediante el cálculo y sectorización de las pendientes. El TPI se calculó por el i-ésimo pixel de Modelo de Elevación Digital (DEM) y fue dado por:

$$TPIi = (h_i - \mu_i) / \sigma i$$
 Ecuación 3.1

Donde:

hi: es la elevación de dicho pixel

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua


μi: es el valor promedio de todos los pixeles alrededor del i-ésimo pixel dentro de un determinado rango de distancia.

El TPI nos dio como resultado un mapa de valores para el análisis geomorfológico, definiendo como umbrales los valores sugeridos por Weiss, (2001), definiendo 6 formas para clasificar el terreno.

- 1. Ridges (Cimas): TPI > 1.0.
- 2. Upper slope (Pendiente pronunciada): 1.0 > TPI > 0.5
- 3. Middle slope (Pendiente media): 0.5 > TPI > -0.5 (ángulos mayores a 15°)
- 4. Flat (Planicie): 0.5 > TPI > -0.5 (ángulos menores a 15°) V.
- 5. Lower slope (Pendiente suave): -0.5 > TPI > -1.0
- 6. Valley (Valle): TPI<-1.0

Ilustración 3.5

Conceptualización del TPI

3.1.7.1.4 Mapa de densidad de lineamiento

Los lineamientos son entidades lineales controladas estructuralmente. Estas fueron dadas por los mapas bases de la zona.

El mapa de densidad de preparó creando shapes de líneas en el software ArcGis, utilizando la herramienta Line Density, Density. Fue calculado a partir de:

Li: Longitud total de todos los lineamientos

A: Área total

Densidad de Lineamiento =
$$\sum_{i=1}^{i=n} \frac{Li}{A} (km - 1)$$
 Ecuación 3.2

3.1.7.1.5 Mapa de densidad de drenaje

La densidad de drenaje es una función inversa de la permeabilidad, por lo tanto, es una variable importante en la delimitación de zonas con favorabilidad de aguas subterráneas. El mapa de densidad de drenaje se obtuvo mediante el software ArcGis, dividiendo:

Di: Longitud total de todos los ríos de la cuenca

A: Área total de la cuenca.

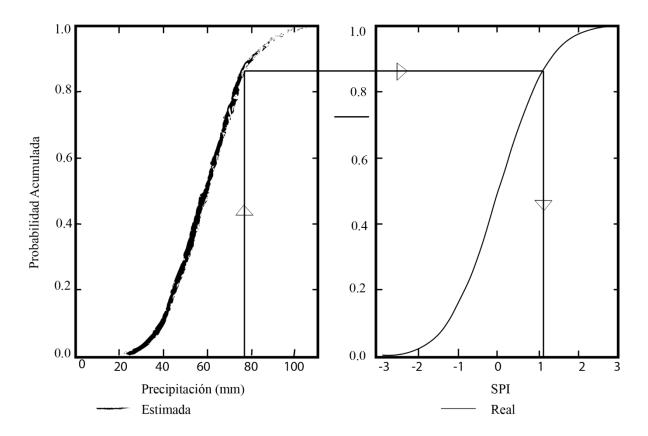
Esta dado por:

Densidad deDrenaje =
$$\sum_{i=l}^{i=n} \frac{Di}{A} (km - 1)$$
 Ecuación 3.3

3.1.7.1.6 Mapa de capacidad de infiltración

La textura del suelo y sus características particulares son unos de los principales factores para la estimación de la tasa de infiltración, mediante la clasificación de suelo tomado de MAGFOR (2000) se estimó porcentaje de capacidad de infiltración que poseen.

3.1.7.1.7 Índice Estandarizado de Precipitación (SPI, Standardized Precipitation Index)

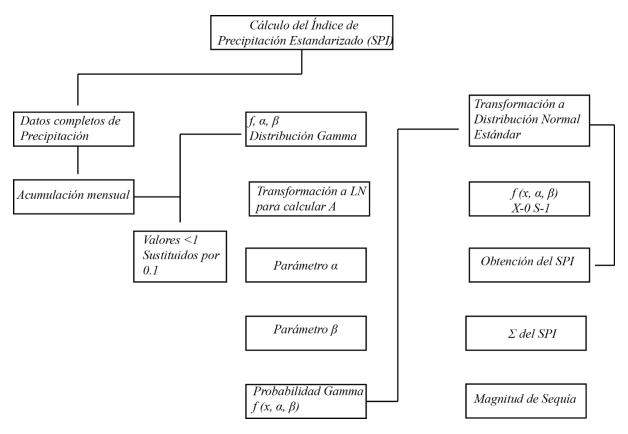

El índice de precipitación estándar fue desarrollado por McKee et al. (1993), el cual es un método de vanguardia que nos permitió evaluar la variabilidad climática, empleado para dar un comienzo al rastreo de sequías y el impacto de la lluvia en los niveles de agua subterránea (Khan et al., 2008).

La precipitación estandarizada es simplemente la diferencia de precipitación de la media durante un período de tiempo específico dividida por la desviación estándar donde la media y la desviación estándar se determinan a partir de registros anteriores (McKee et al., 1993).

En este estudio para la caracterización de la sequía se utilizó este índice, desarrollado por McKee et al. (1993). El cálculo se puede dividir en dos etapas: primero se consiste en ajustar distribución teórica Gamma a la serie histórica de la precipitación. La segunda consiste en convertir la serie de precipitación ajustada a la distribución Gamma en una distribución normal estandarizada con media 0 y varianza 1, cuyo resultado representa el índice SPI (Ilustración 3.6) (McKee et al., 1993).

El análisis de la distribución de la lluvia mediante la distribución gamma generalizada permite la obtención de las estimaciones de los parámetros por máxima verosimilitud, lo que garantiza, en estos casos, un buen ajuste a la distribución empírica.

Ilustración 3.6Ejemplo de transformación de una distribución Gamma ajustada a una distribución normal estandarizada



Fuente: Adaptada de (McKee et al., 1993)

Los pasos para calcular la magnitud de la sequía se presentan en la Ilustración 3.7, iniciando con la acumulación de los datos de precipitación mensual con la intención de observar la extensión temporal del fenómeno.

Ilustración 3.7

Procedimiento para el cálculo del Índice Estandarizado de Precipitación (SPI)

Fuente: Adaptado de (Cortez et al., 2018)

3.1.7.1.7.1 Categorización de la intensidad del SPI

McKee et al., (1993) propuso una clasificación de intensidad de la sequía definida arbitrariamente para los valores del SPI (Tabla 3.5).

Tabla 3.5Valores del Índice Estandarizado de precipitación (SPI)

Valores SPI	Categoría de sequía
2.00 o más	Extremadamente húmedo
1.50 - 1.99	Severamente húmedo
1.00 - 1.49	Moderadamente húmedo
0 – 0.99	Ligeramente húmedo
De 00-99	Sequía leve
De -1.001.49	Sequía moderada
De 1.501.99	Sequía severa
≤ -2.00 o menos	Sequía extrema

Fuente: Elaboración propia

3.1.7.1.8 Análisis multicriterio utilizando SIG

El análisis multicriterio (AMC) es una técnica que se utiliza para considerar muchos criterios diferentes al tomar una decisión. ACM proporciona un proceso lógico y bien estructurado a seguir para que se puedan identificar y clasificar las soluciones alternativas que se consideran por orden de idoneidad (Eastman, 2012).

3.1.7.1.8.1 Proceso de Análisis Jerárquico (AHP)

Es un método que selecciona alternativas en función de una serie de criterios o variables, normalmente jerarquizados, los cuales suelen entrar en conflicto. En esta estructura jerárquica, el objetivo final se encuentra en el nivel más elevado, y los criterios y subcriterios en los niveles inferiores (Saaty, 1990).

Ilustración 3.8

Escala de comparación de Saaty

Intensidad de importancia en una escala absoluta	Definición	Explicación
1	Igual importancia	Dos actividades contribuyen igualmente al objeto
3	importancia moderada el uno del otro	La experiencia y el juicio favorecen fuertemente una actividad sobre otra
5	Importancia esencial o fuerte	La experiencia y el juicio favorecen fuertemente una actividad sobre otra
7	Importancia muy fuerte	Una actividad se ve fuertemente favorecida y su dominio se demuestra en la práctica.
9	Extrema importancia	La evidencia que favorece una actividad sobre otra es del orden o afirmación más alta posible.
2, 4, 6, 8	Valores intermedios entre los dos juicios adyacentes	Cuando se necesita compromiso

Fuente: (Saaty, 1990)

Para el análisis se utilizó el proceso de asignarle un peso a cada capa, siendo los ráster reclasificados a una escala de idoneidad común. Las capas ráster se superpusieron, multiplicando el valor de idoneidad de cada celda ráster por el peso de importancia del ráster, sumando los valores de cada celda para obtener un valor final.

Estos valores obtenidos se escriben en nuevas celdas en una capa de salida, asignando una simbología de colores según los valores.

3.1.8 Índice de favorabilidad de Aguas Subterráneas (GWFI)

El índice de favorabilidad de aguas subterráneas es una cantidad adimensional que se utiliza para cuantificar la probabilidad de existencia de agua subterránea en la zona de estudio. A partir de los pesos normalizados W y Wf, se realiza una combinación lineal ponderada estimando el GWPI de acuerdo a la siguiente fórmula,

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

$$GWFI = \sum_{i}^{n} (XA * YB)$$
 Ecuación 3.4

Dónde, GWFI es el potencial de agua subterránea, X representa el peso de las capas temáticas; Y representa el rango de las subclases de las capas temáticas. El rango A representa el mapa temático y el término B representa las clases de las capas temáticas.

4. CAPÍTULO IV

4.1 ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1.1 Geología local

El municipio de San Juan de Limay se encuentra ubicado dentro de la Provincia Meridional de América Central, la que a su vez está dentro del bloque Chortis y del bloque Chorotega. Está comprendida entre el límite Sur de la provincia del Norte, al Oeste con la provincia de la Depresión, al Sur por el Río Indio y al Este con la provincia de los Llanos de la Costa Atlántica (Hodgson, 2000).

Geológicamente en el municipio predominan las rocas volcánicas del Terciario que datan desde la época del Eoceno hasta el Cuaternario volcánico, las cuales cubren toda la extensión de la provincia.

En el área de estudio se reconocen rocas de tipo intrusivas y extrusivas, así como diferencia en los grados de erosión, meteorización, alteración y fracturamiento de las mismas. Entre ellas predominan las rocas pertenecientes al Grupo Coyol Superior y rocas pertenecientes al Grupo Coyol Inferior.

Las unidades presentes en el municipio no disponen de una secuencia uniforme dentro del área, presentan variabilidad en textura, contenido mineral y contacto entre unidades. Esta varianza se atribuye a depósitos que tienen origen posiblemente en distintos centros volcánicos, y a la presencia de agentes que han intervenido en la meteorización y alteración de las unidades.

Conforme a la caracterización superficial realizada, se detalla a continuación unidades litológicas del área, ordenadas cronológicamente desde su depositación, tomando en cuenta la definición de las unidades de registros previos: (Chavarria & Martínez, 2017; Hodgson, 2000; Schliz, 2009), realizando una correlación e intercalación de información litológica.

❖ Agua Zarca (Kas)

Según Hodgson (1971) esta unidad se encuentra constituida por caliza con nódulos grisáceo, caliza silicificada fosilífera, caliza masiva y arenisca tobácea margosa.

En la comunidad de San Juan de Limay se encuentra localizada en la zona NE del municipio, en el poblado Agua Zarca. Estos pertenecen a la época del Oligoceno y de facies lacustre. Esta unidad sirve de base a la unidad volcánica del área, guardando una discordancia angular.

Unidad de Riolitas (Indeferenciado) (Tmci)

Esta unidad es originada producto de grandes erupciones de flujos piroclásticos ardientes. Se encuentra al Norte y Sureste del municipio, perteneciente al grupo Coyol Inferior.

Estos materials esta relacionado a afloramientos de flujos y morfológicamente la roca se presenta en forma de comos con grados de meteorización moderado, márgenes asociados a alteración hidrotermal y venas de cuarzo (Chavarria & Martínez, 2017).

Unidad de Andesitas (Tmca)

Roca de origen volcánico, tiene una composición intermedia y presencia de plagioclasas cálcicas. Su color se presenta en tonos grisáceos o rojizos ya sea por la meteorización y oxidación de hierro.

Las rocas andesíticas se caracteriza por ser la de mayor extensión en el área formando parte del basamento litológico. Las mayores extensiones de la unidad se aprecian en el parte de San Francisco del Norte, Agua Zarca, San Antonio del Palmar, La Grecia y El Calero. En todas estas zonas el basamento fue producido por coladas de lava de composición intermedia básica, lo cual origino grandes depósitos con texturas afaníticas y texturas porfíriticas.

Las rocas andesíticas con texturas faneríticas se encuentran en afloramientos asociados a sistemas de vetillas epitermales de cuarzo de 2 cm aprox, como es el caso de La Grecia y la comunidad La Naranja (Ilustración 4.1).

Ilustración 4.1

Afloramiento de material andesítico con vetillas de cuarzo

Comunidad La Naranja, coordenadas E 538010, N 1455230

Estos afloramientos se caracterizan por tener color grisáceo, gris oscuro los cuales son originados por el enfriamiento rápido de los flujos de lava, los cuales al movilizarse provoca la fracturación de las superficies enfriadas, facilitando la fragmentación de las mimas, que posterior son asimiladas por el mismo flujo, quedando dentro del flujo que al solidificarse presenta textura fanerítica, en comparación con los fragmentos afaníticos ya solidificados.

Los afloramientos con presencia de rocas andesitas porfíriticas se presentan en forma masiva y en bloques, poseen una coloración grisácea a un gris más oscuro, caracterizada por una matriz fina de color gris claro, en la cual se destacan fenocristales de plagioclasas. Esta unidad puede ser observada en las zonas de El Pedernal, El Palmar, Ocotillo, Tranquera y Los Tablones.

Ilustración 4.2

Afloramiento de andesita porfiritica con un alto contenido de plagioclasas

Localizada en la comunidad El Pedernal, coordenada E 546352, N 1464039

Según Rivera (2006, citado en Schliz, 2009) la unidad de andesitas está asociada a las estructuras de Calderas y sus alrededores.

Unidad Dacitas (Tmcd)

Esta unidad presenta una composición mineralógica de feldespato, plagioclasas y piroxenos, tiene un color gris claro, con una textura afanítica y pórfida con cristales de cuarzo. Esta unidad se encuentra distribuida en la parte N y NW del municipio.

Se caracteriza por intruir a la unidad de toba, con matríz afanítica félsica. Estas rocas por lo general se encuentran en un alto grado de alteración debido al dióxido de hierro, incluso formando suelos arcilloso (Schliz, 2009). Sin embargo, se logra apreciar su textura porfíritica con fenocristales de plagioclasas y piroxenos en la matriz.

Ilustración 4.3

Muestra de dacita tobácea

Comunidad La Palma, coordenadas E 528318, N 1453066

❖ Intrusivo Intermedo (Tii)

Los cuerpos rocosos son de origen intermedios, en el municipio de San Juan de Limay los cuerpos intruyen por lo general a las rocas volcánicas del Grupo Coyol Inferior (Kas, Tmci, Tmca, Tmcd), siendo los responsables posiblemente de las partes alteradas de las rocas encajantes de la zonas. Esta unidad se encuentra ubicada en la parte Suroeste del municipio.

Unidad de roca volcánica Basalto (Tpcb)

La unidad basáltica aflora en bloques los cuales sometidos a la meteorización se han fracturado. Basados en las descripciones macroscópicas esta unidad se originó por grandes flujos de lava de composición basálticas, de textura masiva con una matriz afanítica, con una coloración negra en muestras frescas, y color amarillento cuando se encuentran se encuentran alteradas.

Ilustración 4.4

Afloramiento de rocas basáltica con presencia de meteorización y fracturamiento conjugado

Camino ubicado en Valle La Palma, coordenadas E 529312, N 1453037

Unidad de Ignimbritas (Tpci)

Constituida por una secuencia en transición hacia arriba de las unidades de basalto y andesita. El origen se relaciona a nubes ardientes (Pliniana), presentando una estructura de domos o agujas cónicas.

Los principales afloramientos en el municipio se encuentran en la parte NE Y NW de San Juan de Limay.

Unidad Aluvial (Qal)

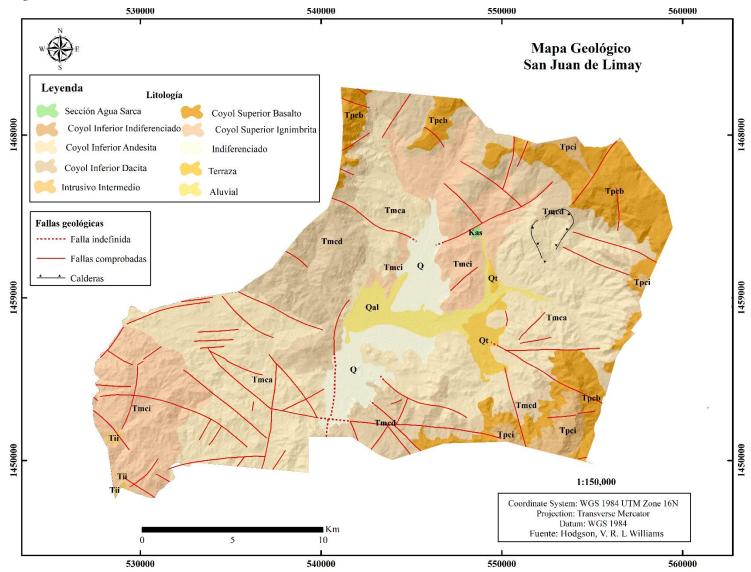
Ubicada en la parte central del municipio, siendo la parte más baja. Está compuesta por suelos de origen residual, producto de la meteorización, intemperismo, descomposición físicamecánica y química de las rocas a causa de los agentes de los agentes exógenos.

Esta unidad presenta suelos con texturas arcillosas a limosas. En algunas zonas está compuesta por grandes cantidades de rodados de materiales volcánicos tanto extrusivos como intrusivos.

Ilustración 4.5Capa de material aluvial

Depósito aluvial, con presencia de cantos sub-redondeados de materiales volcánicos. Comunidad San Antonio de los Platanares, coordenadas E 552964, N 1458422

Ilustración 4.6


Cuaternario aluvial

Río Los Quesos en la parte central del municipio, coordenadas E 537183, N 14555755

Mapas 4.1

Mapa Geológico

Ilustración 4.7Columna litoestratigráfica generalizada del municipio de San Juan de Limay

					Columna Litoest	ratográfica Generalizada		
	Edad		Form.	Unidad Estratigráfica	Espesor	Litología		Descripción
				Aluvial (Qal) Terraza	0	Ot Out	compuesto	reciente y sedimentos aluviales, de gran cantidad de rodados de nateriales volcánicos.
		011	perior	(Qt) Indiferenciado (Q)	25 m	**************************************	cadenas	nidad esta relacionada con de estructuras de calderas, floramientos son masivos
		Plioceno	Coyol Superior	Coyol Superior Ignimbrita (Tpci)	35 m		Pata mida	d basáltica aflora en bloques
oico	rio			Coyol Superior Basalto, Toba (Tpeb)	70 m	Tinds	meteoriz	ados los cuales sometidos ión han sido fracturados
Cenozoico	Terciario			Intrusivo Intermedio (Tii) Coyol Inferior	95 m	Tinka .		Cuerpos rocosos de origen intermedio, los cuales intruyen a las
		01	Coyol Inferior	Dacita (Tmcd)	150 m		Caracterizada por intruir a la unidad de toba, con matriz	rocas volcánicas
		Mioceno	Coyo	Coyol Inferior Andesita (Tmca)	175 m	TH	afanítica félsica. Estas rocas presentan un alto grado de alteración	Basamento producido por coladas de lava de composición intermedia, originando depósitos de texturas afaníticas y porfiriticas
			pa	Coyol Inferior Indeferenciado (Tmei)	190 m —	V V		Se encuentra formando pequeños cerros sobreyaciendo a andesitas, Afloramiento de bloques riolíticos.
			Matagalpa	Sección Agua Sarca (Kas)	200 m	Kas		Sedimentos fosilíferos, localicada al NE en la comunidad Agua Zarca

Fuente: Elaboración propia basado en caracterización y estudios previos del área

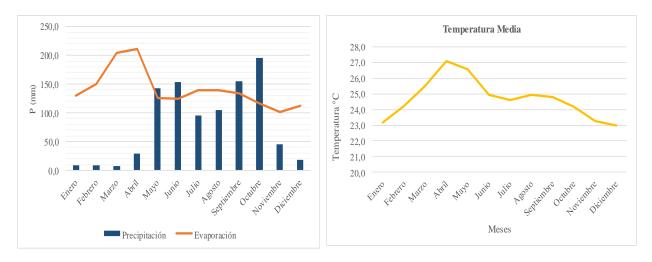
4.1.2 Hidrogeología

4.1.2.1 Balance Hídrico Climático

En base a datos climáticos de la estación meteorológica Condega se realizó un balance climático para un período de 18 años, que va desde el año 2002 hasta el año 2020.

Se analizaron los datos de las precipitaciones medias, evaporaciones medias y temperaturas medias mensuales de cada año, a lo largo del período establecido. Los cuales fueron utilizados para realizar el balance (Tabla 4.1).

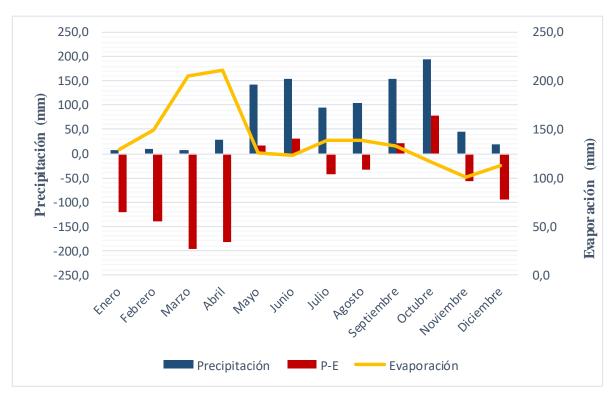
En la Ilustración 4.9 se observa las pérdidas en las reservas de agua subterránea, los primeros 4 meses son los que presentan mayor déficit en cuanto a la precipitación mensual, donde las salidas superan los ingresos de agua al sistema, en los meses centrales del año hidrológico existe una relativa estabilidad en cuanto a los niveles de reservas, que va desde el mes de mayo hasta octubre; meses en los cuales se han registrado las mayores precipitaciones, en cambio, los meses finales registraron poca precipitación, produciendo un cambio grande en el almacenamiento.


Los datos tomados muestran que la temperatura media se ha mantenido en promedios similares desde los (23 °C – 27,1 °C), presenciando un mayor aumento en la temperatura desde enero hasta abril, coincidiendo algunos ligeros aumentos de temperatura con el fenómeno de El Niño Oscilación Sur (ENOS), ocasionando sequías moderadas (GWP, 2016).

El análisis del balance hídrico climático muestra que existe predominio de las evaporaciones mensuales sobre las precipitaciones mensuales, presentando la variabilidad y cambio que existe en el almacenamiento de las aguas.

Este análisis es de utilidad para determinar la falta y el exceso de agua en el municipio, en el cual sabemos existe un efecto negativo en el que se presentan déficits hídricos.

Ilustración 4.8


Representación de variables climáticas en el área de estudio

a) Precipitación y evaporación media, b) Temperatura media Fuente: Elaboración propia con datos mensuales en un período de 18 años (2002-2020), INETER

Ilustración 4.9

Balance climático

Fuente: Elaboración propia con datos de la estación meteorológica Condega, INETER durante un período de 18 años (2002-2020)

Tabla 4.1

	INSTITU	TO NICARAGÜENS	SE DE ESTUDIOS TE	ERRITORIALES		
		DIRECCIÓN GENEF	RAL DE METEOROI	.OGÍA		
		RESUMEN MET	EOROLÓGICO ANU	JAL		
Estación:	CONDEGA / ESTE	LI			Código:	45050
Departamento: Es	STELI			Municipio:		CONDEGA
Latitud:	13°20'22"			Longitud:		86°23'07"
Años:	2002 - 2021			Elevación:		560 msnm
Parámetro:	Precipitación	Evaporación	Temperatura	Tipo:		AG
Meses	Variable	Suma	Media	Max	Min	ΔS
	P	155,8	8,2	22,3	0,0	
Enero	E	1814,4	129,6	162,2	105,4	-121
	T	440,5	23,2	24,3	22,4	
	P	158,6	8,3	62,7	0,6	
Febrero	E	2091,9	149,4	168,4	106,2	-141
	T	460,5	24,2	25,4	23,1	
	P	151,9	8,0	49,6	0,2	
Marzo	Е	2866,5	204,8	232,8	174,5	-197
	Т	485,2	25,5	27,2	24,6	
	P	558,7	29,4	101,0	0,0	
Abril	Е	2955,1	211,1	250,6	178,5	-182
	T	514,8	27,1	28,0	26,2	
	P	2706,9	142,5	323,0	3,1	
Mayo	Е	1752,5	125,2	144,1	89,9	17
	T	504,6	26,6	27,8	25,2	
	P	2919,6	153,7	270,7	69,8	
Junio	Е	1731,9	123,7	158,4	100,3	30
	T	473,6	24,9	26,0	24,3	
	P	1804,7	95,0	254,4	22,6	
Julio	Е	1942,9	138,8	158,1	121,1	-44
	Т	467,7	24,6	25,9	23,1	
	P	1984,9	104,5	373,4	20,1	
Agosto	Е	1942,9	138,8	158,1	121,1	-34
	T	473,8	24,9	25,9	24,2	
	P	2953,0	155,4	298,5	24,1	
Septiembre	Е	1864,6	133,2	168,7	112,6	22
-	Т	471,5	24,8	25,9	23,8	
	P	3704,7	195,0	310,1	81,7	
Octubre	Е	1622,4	115,9	142,9	89,5	79
	T	459,2	24,2	25,4	23,1	\dashv
	P	849,1	44,7	240,1	1,4	
Noviembre	E	1410,4	100,7	114,5	84,4	-56
	T	442,1	23,3	24,5	22,3	
	P	341,9	18,0	55,0	0,8	
Diciembre	E	1456,5	112,0	127,7	89,4	-94
	T	436,5	23,0	24,1	21,0	

Fuente: Elaboración propia con datos de la estación meteorológica Condega, INETER.

4.1.2.2 Inventario de pozos

Se realizó el inventario de 28 pozos ubicados dentro del municipio de San Juan de Limay, Estelí, con un total de 19 pozos perforados y 9 pozos excavados. Entre ellos se encuentran pozos de carácter público y de zonas privadas (Tabla 4.2).

Las profundidades de los niveles de agua subterránea en la zona varían desde los 0,50 cm en el pozo de San Antonio del Palmar hasta los 16, 79 en el pozo de la comunidad La Naranja, el agua de los pozos se utiliza para consumo y para higiene personal, aunque en algunos casos por problemas de contaminación o daño se utiliza para riego y para ganado.

4.1.2.3 Superficie piezométrica y dirección de flujo

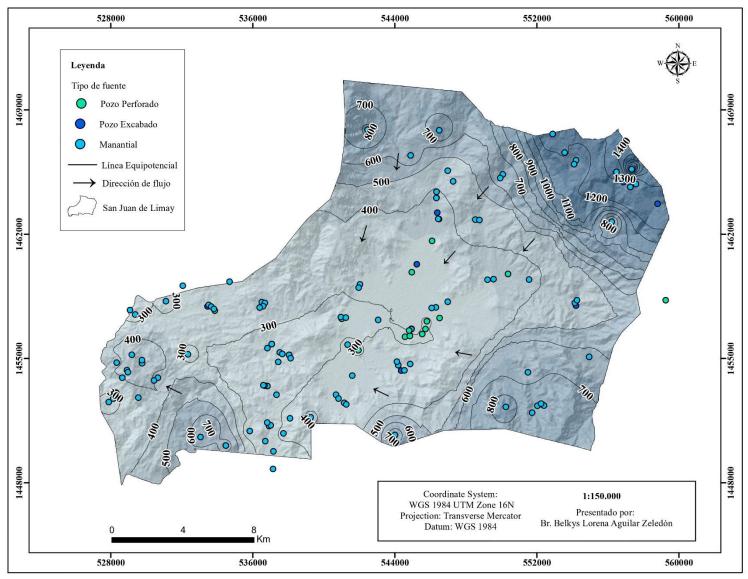
La superficie piezométrica (en dos dimensiones X, Y) muestra la variación espacial de las cargas hidráulicas del agua en factores como la superficie del terreno, la dirección y sentido del flujo subterráneo.

De acuerdo al Mapa 4.2, la carga hidráulica (h) o elevación del nivel agua subterránea en el municipio, con referencia al nivel medio del mar; se encuentra entre los 1400 m hasta los 300 m, siendo las cotas más bajas las ubicadas en el centro y al oeste del municipio.

Se muestra la dirección del flujo subterráneo, en dirección Noreste-Suroeste, tomando como zona de descarga las planicies y valles, en este caso el Valle de San Juan de Limay.

Tabla 4.2

Inventario de pozos


			Ι	Datos		Información del pozo				Parámetros tomados en campo									
ID	X	Y	Z	Fecha	Localidad	Codigo	Tipo de pozo	alt brocal	Nivel c.b	NEA	H	Ph	Temp	TDS	CE	ORP	PPM	OD	AS
1	541968	1456407	293	21/07/2021	San juan de limay	PP1	Perforado	0,40	ND	ND	ND	7,62	28,98	305	613,45	-67	0,01	0,3	2
2	541958	1455450	304	21/07/2021	Tranquera	PP2	Perforado	0,58	7,52	6,94	297,06	7,75	29,97	425	824	-48,1	0,02	0,3	0
3	546352	1464039	396	21/07/2021	El Pedernal	PP3	Perforado	0,5	7,9	7,4	388,6	8,15	30,62	345	690	-48,2	0,02	0,2	0
4	546357	1464381	405	21/07/2021	El Pedernal	PP4	Perforado	0,32	10,38	10,06	394,94	7,94	32,03	308	700	7,3	0,02	0,2	0
5	546492	1462848	394	21/07/2021	Mateare	PP5	Perforado	0,30	6,9	6,6	387,4	7,55	34,36	448	895	-44	0,01	0,2	0
6	546107	1461611	360	21/07/2021	Mateare	PP6	Perforado	0,40	5,1	4,7	355,3	7,67	31,52	189	386	-13,3	0,01	0,2	0
7	544961	1459857	337	22/07/2021	Mateare	PP7	Perforado	0,47	4,93	4,46	332,54	ND	ND	ND	ND	ND	ND	ND	ND
8	559270	1458271	434	22/07/2021	Los encuentros	PP8	Perforado	0,39	8,81	8,42	425,58	ND	ND	ND	ND	ND	ND	ND	ND
9	550384	1459752	378	22/07/2021	Platanares	PP9	Perforado	0,87	10,13	9,26	368,74	7,58	30,8	346	694	-26,99	0,01	0,2	0
10	546528	1457272	324	22/07/2021	La Grecia	PP10	Perforado	0,65	9,33	8,68	315,32	8,02	29,31	468	964	-42,5	0,01	0,2	0
11	544954	1456661	322	22/07/2021	Redes de Esperanza	PP11	Perforado	0,33	1,77	1,44	320,56	8,47	29,75	655	1314	-64,7	0,01	0,2	0
12	544205	1454618	335	22/07/2021	El Morcillo	PP12	Perforado	0,38	1,92	1,54	333,46	8,23	29,46	365	793	-57,4	0,02	0,2	0
13	541159	1452497	340	22/07/2021	San Lorenzo	PP13	Perforado	0,84	4,9	4,06	335,94	7,98	29,86	353	710	-48,8	0,02	0,2	0
14	546404	1463205	384	22/07/2021	Tranquera	PE1	Excabado	1,00	7,78	6,78	377,22	ND	ND	ND	ND	ND	ND	ND	ND
15	545246	1460295	337	22/07/2021	Mateare	PE2	Excabado	0,57	4,91	4,34	332,66	7,96	28,87	281	555	-21,8	0,02	0,2	0
16	554217	1457973	444	22/07/2021	Los encuentros	PE3	Excabado	0,50	4,83	4,33	439,67	7,87	27,41	413	840	-86	0,01	0,2	0
17	528306	1453066	323	01/11/2021	La Palma	PP1	Perforado	0,41	14,5	14,09	308,91	8,43	29,22	416	813	38,6	ND	ND	0
18	528142	1452734	273	01/11/2021	La Palma	PP2	Perforado	0,50	3,7	3,2	269,8	8,42	29,24	1537	1074	33,1	ND	ND	0
19	529760	1454734	446	01/11/2021	Los Tablones	PP3	Perforado	0,35	3,7	3,35	442,65	8,15	27,86	480	960	28,4	14,6	0	0
20	533870	1457689	312	01/11/2021	S.A del Palmar	PP4	Perforado	0,50	1	0,5	311,5	8,65	28,84	448	895	18,5	3,14	42,5	5
21	533451	1457926	319	01/11/2021	El Palmar	PE1	Excabado	0,60	0,96	0,36	318,64	ND	ND	ND	ND	ND	ND	ND	ND
22	541005	1457231	286	01/11/2021	El Calero	PP5	Perforado	0,38	5	4,62	281,38	8,91	29,17	615	1229	20,9	1,92	26,1	0
23	558812	1463711	1272	02/11/2021	El Pino	PE2	Excabado	0,41	2,3	1,89	1270,11	9,3	21,8	253	509	93,1	2,58	32,1	ND
24	556879	1464927	1262	02/11/2021	San Luis	PE3	Excabado	0,52	3,78	3,26	1258,74	9,2	21,14	353	702	114,9	2,46	30,4	0
25	544364	1454311	370	02/11/2021	Los Enramados	PE4	Excabado	0,48	4,58	4,1	365,9	9,02	27,98	596	1190	38,1	1,92	25,4	0
26	537075	1455808	249	02/11/2021	La Naranja	PE5	Excabado	0,70	10	9,3	239,7	8,81	29,52	432	935	56,5	2,49	32,4	ND
27	538058	1455190	283	02/11/2021	La Naranja	PE6	Excabado	0,72	17,51	16,79	266,21	8,69	29,95	566	1131	54,3	2,07	28,3	11
28	536826	1453444	267	02/11/2021	Los Colorados	PP6	Perforado	0,80	9,22	8,42	258,58	8,47	30,03	410	818	29,8	1,9	20,7	0

ND: No hay datos Nivel c.b: Nivel del agua con brocal

Fuente: Elaboración propia

Mapas 4.2

Mapa Piezométrico del área de estudio

4.1.2.4 Parámetros físico-químicos

En la presente investigación se tomaron de base las recomendaciones de la legislación nicaragüense (NTON 09 003-99) y las Normas CAPRE, (1994) para los fines de consumo o uso de las aguas según la cantidad de concentración de los parámetros físico químicos de las mismas.

En la Tabla 4.4 y 4.5 se comparan las concentraciones de parámetros físicos químicos de los pozos muestreados, con las normas antes mencionadas.

рH

En el municipio el pH varía desde 7,58 hasta los 9,3. La distribución del pH en el área no posee variación tomando en cuenta la profundidad de los pozos como es el caso del pozo La Palma con un pH de 8,43 y una profundidad de 83 metros al igual que el pozo El Morcillo con un pH de 8,23 y una profundidad de 2,3 metros (Ilustración 4.10).

Los datos fueron tomados en pozos con profundidades que oscilan desde los 2,1 m hasta los 83 m, observando así que el pH del agua subterránea del municipio es aproximadamente la misma (Tabla 4.3).

El pH presenta rangos similares entre los pozos y la mayoría entra en los límites recomendados, exceptuando 3 pozos excavados (El Pino, Los Enramados y San Luis) con un pH mayor de 9.

Temperatura (°C)

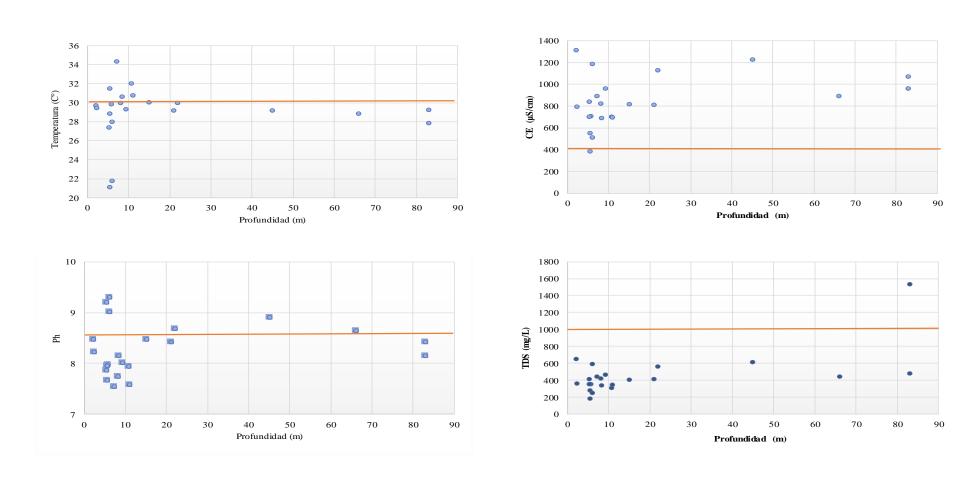
La temperatura se encuentra en rangos desde los 21,8 °C hasta los 34,46 °C, en la Ilustración 4.8 se puede observar la variabilidad en la temperatura en los pozos con menor profundidad, mientras que los pozos que poseen mayor profundidad se mantuvieron en rangos cercanos de temperatura.

Conductividad Eléctrica (CE)

Las distribuciones de las conductividades eléctricas en las aguas poseen un comportamiento zonificado presentando los rangos más bajos en la parte NE, y los rangos más altos en la zona central (Ilustración 4.10).

Los rangos varían desde los 386 μ S/cm en el pozo Mateare hasta los 1314 μ S/cm en el pozo ubicado en la Comunidad Redes de Esperanza.

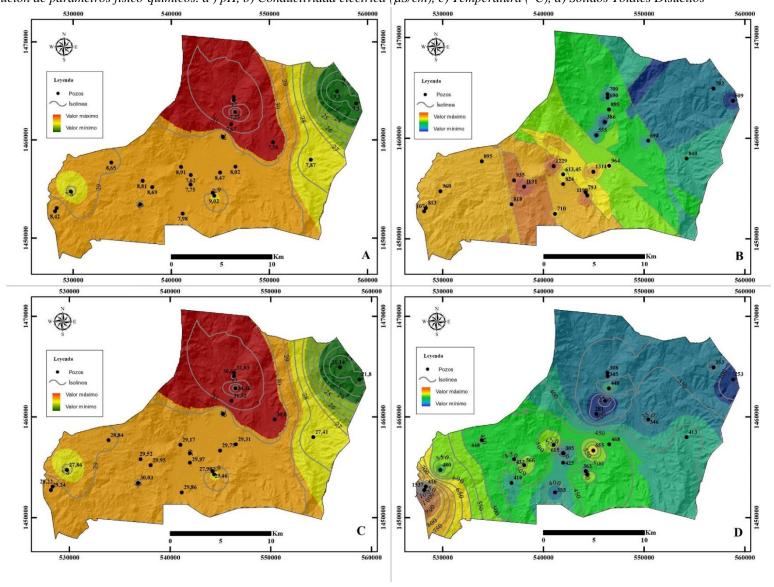
Las concentraciones se encuentran fuera del rango admisible por las normas, estando arriba de los $500~\mu\text{S/cm}$.


Sólidos Totales Disueltos (TDS)

Las concentraciones de sólidos totales oscilan en rangos muy cercanos entre 189 mg/l a 651 mg/l, exceptuando el pozo La Palma con una concentración de 1537 mg/l (Tabla 4.3).

La Ilustración 4.10 muestra la distribución de Sólidos Totales Disueltos con un aumento en dirección Noroeste del municipio. Estas concentraciones se encuentran debajo del límite recomendado, siendo el pozo La Palma el único que posee mayor concentración de sólidos disueltos (Tabla 4.5).

 Tabla 4.3


 Parámetros físico-químicos

Fuente: Elaboración propia

Ilustración 4.10

Distribución de parámetros físico-químicos. a) pH, b) Conductividad eléctrica (μS/cm), c) Temperatura (°C), d) Sólidos Totales Disueltos

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

 Tabla 4.4

 Comparación de los parámetros Físico-químicos con valores recomendados

Parámetro	Unidad	Valor recomendado
Temperatura	°C	18 - 30
Pozos		•
San juan de limay		28,98
Tranquera		29,97
El Pedernal		30,62
El Pedernal		32,03
Mateare		34,36
Mateare		31,52
Platanares		30,8
La Grecia		29,31
Redes de Esperanza		29,75
El Morcillo		29,46
San Lorenzo		29,86
Mateare		28,87
Los encuentros		27,41
La Palma		29,22
La Palma		29,24
Los Tablones		27,86
S.A del Palmar		28,84
El Calero		29,17
El Pino		21,8
San Luis		21,14
Los Enramados		27,98
La Naranja		29,52
La Naranja		29,95
Los Colorados		30,03

Unided	Valor recomendado
	400
μ5/сш	400
	613,45
	824
	690
	700
	895
	386
	694
	964
	1314
	793
	710
	555
	840
	813
	1074
	960
	895
	1229
	509
	702
	1190
	935
	1131
	818
	Unidad µS/cm

Fuente: Elaboración propia tomando de referencia las Normas Capre y la legislación nicaragüense NTON 09 003-99.

Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua

Tabla 4.5Comparación de los parámetros Físico-químicos con valores recomendados

Parámetro	Unidad	Valor recomendado
Sólidos Disueltos	mg/l	1000
Pozos		
San juan de limay		305
Tranquera		425
El Pedernal		345
El Pedernal		308
Mateare		448
Mateare		189
Platanares		346
La Grecia		468
Redes de Esperanza		655
El Morcillo		365
San Lorenzo		353
Mateare		281
Los encuentros		413
La Palma		416
La Palma		1537
Los Tablones		480
S.A del Palmar		448
El Calero		615
El Pino		253
San Luis		353
Los Enramados		596
La Naranja		432
La Naranja		566
Los Colorados		410

Parámetro	Unidad	Valor recomendado
pН	adm	min. 6.0 y máx 8.5
Pozos		
San juan de limay		7,62
Tranquera		7,75
El Pedernal		8,15
El Pedernal		7,94
Mateare		7,55
Mateare		7,67
Platanares		7,58
La Grecia		8,02
Redes de Esperanza		8,47
El Morcillo		8,23
San Lorenzo		7,98
Mateare		7,96
Los encuentros		7,87
La Palma		8,43
La Palma		8,42
Los Tablones		8,15
S.A del Palmar		8,65
El Calero		8,91
El Pino		9,3
San Luis		9,2
Los Enramados		9,02
La Naranja		8,81
La Naranja		8,69
Los Colorados		8,47

Fuente Elaboración propia tomando de referencias las Normas CAPRE y la legislación nicaragüense NTON 09 003-99

4.1.3 Concentraciones de arsénico

Se realizaron pruebas in situ de las concentraciones de arsénico en el área, y se combinaron con la información de las pruebas realizadas en el municipio por el Centro de Investigaciones de Recursos Acuáticos (CIRA) en el 2012 (Anexo 6.1), este nos proporcionó una visión general amplia de la contaminación de las fuentes de agua potable en el área de estudio.

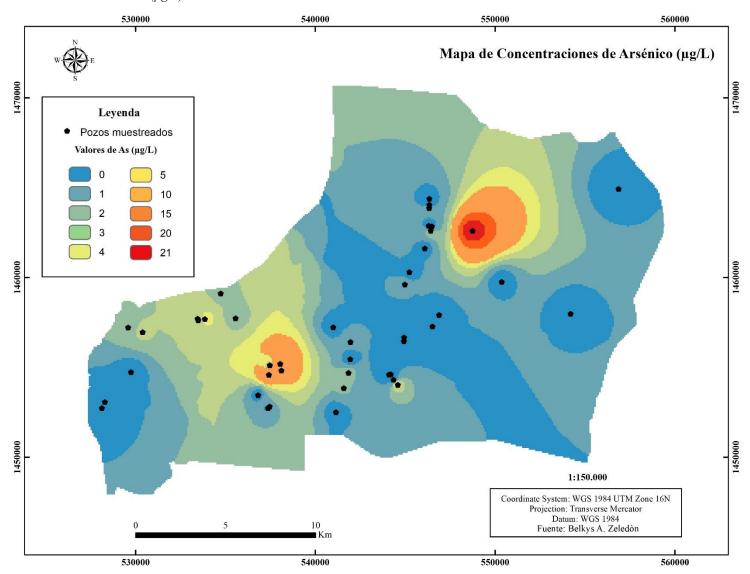
Según González et al., (2019) la fuente de contaminación por arsénico en Nicaragua posiblemente son de origen volcánico, tanto de rocas volcánicas como geotérmicas y de los fluidos hidrotermales distribuidos por todo el país. El arsénico puede haber ingresado directamente al agua subterránea por influencia de geotermalismo, o indirectamente por disolución reductora de álcalis, las cuales van en dependencia de las condiciones geoquímicas locales.

En total se muestrearon 22 pozos, distribuidos en todo el municipio de San Juan de Limay, 17 pozos perforados y 5 excavados (Tabla 4.6).

De los 22 pozos muestreados se identificaron 3 fuentes con presencia de concentraciones de arsénico, de los cuales el que presento mayor concentración fue el pozo excavado en la comunidad La Naranja con 11μg/L. Según las normas CAPRE el valor máximo admisible para la ingesta de arsénico es de 10 μg/L.

Para la elaboración del mapa se tomaron los datos obtenidos en campo y las pruebas realizadas por el CIRA, interpolando los puntos con la herramienta Kriging de ArcGis (Mapa 4.3). Se puede observar que las zonas con menor concentración o una concentración nula se encuentran al Centro y al Sureste del municipio. Y las zonas con mayor presencia de As es la parte Noreste y la parte Suroeste.

 Tabla 4.6


 Inventario de pruebas de concentraciones de arsénico in situ

Comunidad	Fecha	Código	X	Y	Tipo de fuente		As (μg/L)
SJL	21/07/2021	PP1	541968	1456407	Perforado	Agua natural	2
Tranquera	21/07/2021	PP2	541958	1455450	Perforado	Agua natural	0
El Pedernal	21/07/2021	PP3	546352	1464039	Perforado	Agua natural	0
El Pedernal	21/07/2021	PP4	546357	1464381	Perforado	Agua natural	0
Mateare	21/07/2021	PP5	546492	1462848	Perforado	Agua natural	0
Mateare	21/07/2021	PP6	546107	1461611	Perforado	Agua natural	0
Platanares	22/07/2021	PP9	550384	1459752	Perforado	Agua natural	0
La Grecia	22/07/2021	PP10	546528	1457272	Perforado	Agua natural	0
Redes de Esper.	22/07/2021	PP11	544954	1456661	Perforado	Agua natural	0
El Morcillo	22/07/2021	PP12	544205	1454618	Perforado	Agua natural	0
San Lorenzo	22/07/2021	PP13	541159	1452497	Perforado	Agua natural	0
Mateare	22/07/2021	PE2	545246	1460295	Excabado	Agua natural	0
Los encuentros	22/07/2021	PE3	554217	1457973	Excabado	Agua natural	0
La Palma	01/11/2021	PP1	528306	1453066	Perforado	Agua natural	0
La Palma	01/11/2021	PP2	528142	1452734	Perforado	Agua natural	0
Los Tablones	01/11/2021	PP3	529760	1454734	Perforado	Agua natural	0
S.A del Palmar	01/11/2021	PP4	533870	1457689	Perforado	Agua natural	5
El Calero	01/11/2021	PP5	541005	1457231	Perforado	Agua natural	0
San Luis	02/11/2021	PE3	556879	1464927	Excabado	Agua natural	0
Los Enramados	02/11/2021	PE4	544364	1454311	Excabado	Agua natural	0
La Naranja	02/11/2021	PE6	538058	1455190	Excabado	Agua natural	11
Los Colorados	02/11/2021	PP6	536826	1453444	Perforado	Agua natural	0

Fuente: Elaboración propia

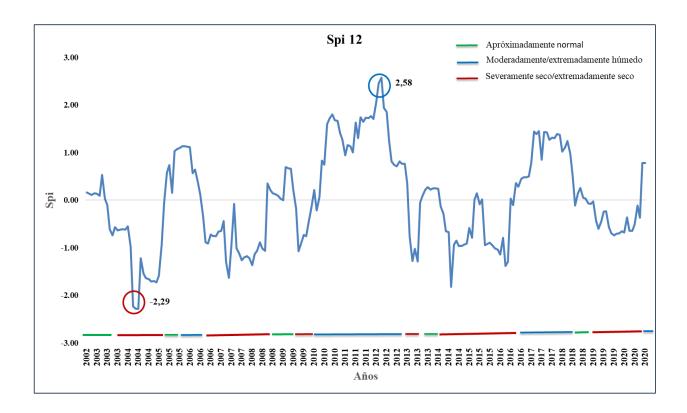
Mapas 4.3

Mapa de concentraciones de Arsénico (μg/L)

4.1.4 Índice de Precipitación Estandarizado (SPI)

El valor del SPI mensual representa la intensidad de la sequía, es decir, que tan grande es el déficit de precipitación. Se utilizaron datos meteorológicos mensuales continuos de la estación Condega, Estelí para estudiar el comportamiento del municipio de San Juan de Limay, Estelí.

Se tomaron valores de 18 años debido a la limitante de escacez datos en el área, y se utilizó un período de 12 meses del spi para conocer los impactos hidrológicos (Anexo 6.2), reflejando los patrones de precipitación a lo largo del tiempo generalmente utilizado como indicador de caudal reducido, almacenamiento y niveles de agua subterránea. Estos datos proporcionan una medida de la distribución de la frecuencia de precipitación según (McKee et al., 1993).

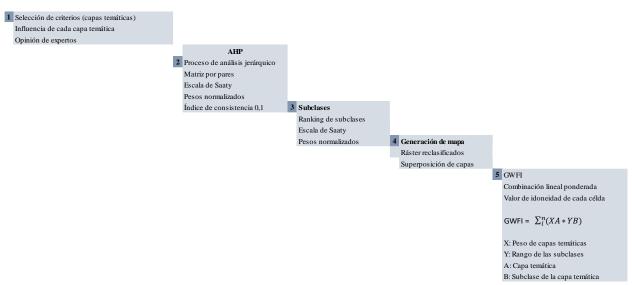

Los valores negativos del SPI muestran condiciones de sequía, como se observa en la Ilustración 4.11, el análisis del SPI de 12 meses muestra que los valores extremadamente secos se presentaron desde el 2003 al 2008 con un SPI por debajo de -2, seguida desde el 2009 por niveles de precipitación promedio y luego los niveles bajos de precipitaciones comenzaron nuevamente desde el 2013 al 2016, esta última asociada a anomalías de lluvias durante el período de El Niño de 2015-2016.

El municipio continúa teniendo condiciones de lluvia por debajo de los promedios, experimentando períodos o escalas cortas de humedad y aún más secos agrupados en escalas de tiempo por lo que se hacen más recurrentes los cambios en los regímenes de precipitación de un año a otro.

Esto genera un desgaste en los ecosistemas, cosechas y déficit de agua sobre todo en el corredor seco, debido a que es la zona con niveles más altos asociados a sequías según el mapa de distribución de sequía de Nicaragua (Anexo 6.3).

Ilustración 4.11

Índice de Precipitación Estandarizado (12 meses)


Nota: SPI 12 meses para la estación Condega, Estelí (2002-2020). Fuente: Elaboración Propia

4.1.5 Análisis de Favorabilidad Hidrogeológica

Se entiende por capa temática al conjunto de elementos geográficos lógicamente relacionados y sus atributos o subclase que lo complementan.

Ilustración 4.12

Metodología AHP

Fuente: Elaboración propia

4.1.5.1 Selección de capas temáticas

La cantidad de capas temáticas utilizadas fue en dependencia de la influencia de cada una en las aguas subterráneas y la disponibilidad de datos en el área de estudio. Se utilizaron 6 capas temáticas para realizar el análisis de favorabilidad hidrogeológico.

Las capas temáticas son: Litología, Concentraciones de arsénico, TPI, Capacidad de infiltración, Densidad de Lineamiento, densidad de drenaje.

4.1.5.2 Capas temáticas

Litología

El entorno geológico juega un papel vital en la ocurrencia y distribución de aguas subterráneas, influyendo en la porosidad como en la permeabilidad. La capa de litología se preparó digitalizando (Mapa Geológico Nicaragua, 1: 50,000. Hoja 2855-I San Juan de Limay, Hoja 2855-II Achuapa, Hoja 2955-III Estelí y la Hoja 2955-IV La Sirena. Catastro e Inventario de Recursos Naturales, Managua, 1971).

La geología del área fue reclasificada en subclases de acuerdo a la metodología AHP, asignándoles los pesos más bajos a los materiales volcánicos terciarios masivos, debido a que se consideran inadecuadas para la infiltración de agua al acuífero, por la poca permeabilidad y la baja capacidad de transmitir agua (Tabla 4.11).

Siendo los que poseen mayores pesos la formación Cuaternaria constituida por sedimentos aluviales, con intercalación de rodados volcánicos, debido a que estos presentan una mayor permeabilidad y son más favorables para el almacenamiento de aguas subterráneas que rocas masivas (Mapa .4.4).

• Concentraciones de arsénico

El arsénico está presente en el agua por la disolución natural de minerales de depósitos geológicos, sedimentación atmosférica y por la influencia antropogénica. La principal vía de dispersión y movimiento es el ambiente es el agua, las concentraciones en aguas subterráneas es muy variable.

Conocer las concentraciones de arsénico en el área es una base importante para determinar si el agua está dentro de los parámetros admisibles para uso y consumo. En esta investigación se les asignó un mayor peso a las zonas que presentaron concentraciones en

rangos admisibles para consumo que van desde 0 μg/L hasta 5 μg/L, siendo las zonas con mayores concentraciones de arsénico los que poseen pesos menores (Mapa 4.5).

• Índice de Posición Topográfica (TPI)

El índice de posición topográfica permitió una clasificación del terreno basado en la escala de Weiss, (2001). El análisis del modelo Digital de Elevación ayudo a obtener el mapa basado en el TPI clasificando las zonas en: Cimas, Pendientes pronunciadas, Pendiente media, Pendiente suave, Planicies y Valles (Mapa 4.6).

Se asignaron mayores pesos a las zonas con relieves planos, valles y pendientes medias debido a que favorecen el proceso de infiltración y recarga hídrica, al permitir un mayor período de tiempo de estadía del agua en el suelo. Por otra parte, las zonas con pendientes fuertes y pronunciadas aumentan la velocidad y cantidad de escorrentía superficial lo que influye en la capacidad de recarga hídrica, asignándoles un peso bajo ya que se asume no favorable.

• Textura de suelo/Capacidad de infiltración

La textura del suelo es un factor determinante en la cantidad de agua que pueda infiltrarse e influir en la recarga hídrica.

Los diferentes tipos de suelo suelen poseer una permeabilidad de suelo diversa, que depende en gran medida de la textura del suelo, su estructura y la cobertura del suelo en el área (Ponnusamy, 2020).

Los tipos de texturas presentes en el área son: Franco arenoso (grueso), franco arenoso limoso (medio), franco arcilloso (fino), materiales arcillosos muy finos y basamento rocoso. La textura más gruesa con intercalaciones de arena, grava y limo se consideró la más adecuada asignándole el mayor peso, mientras que suelos arcillosos y compactos (basamento rocoso) debido a que tienen menor capacidad de infiltración se les asignó un menor peso (Mapa 4.7).

• Densidad de lineamiento

Los lineamientos se pueden describir como estructuras o entidades lineales o curvilíneas en la superficie de la tierra y son indicadores de zonas más débiles del basamento rocoso. Los lineamientos representan las zonas de fallas y fracturas que dan como resultado una mayor porosidad y permeabilidad secundaria, estas estructuras afectan la infiltración de escorrentía superficial al subsuelo.

Juegan un papel fundamental en el potencial de las aguas subterráneas, ya que las zonas de alto potencial de aguas subterráneas son seguidas por una alta densidad de lineamientos (Ahmadi et al., 2021).

Se les asigno el peso más alto a las áreas con alta presencia de lineamiento considerándose las más adecuadas, a diferencia de las zonas que no tienen presencia de lineamientos o fallas, consideradas zonas menos favorables por ello se les asigno menor peso. (Mapa 4.8)

• Densidad de drenaje

La densidad de drenaje tiene una influencia significativa en la escorrentía y la infiltración del agua subterránea. El sistema de drenaje de un área está determinado por la naturaleza y la estructura del basamento rocoso, el tipo de vegetación, capacidad de absorción, infiltración de lluvia de los suelos y el gradiente de pendiente del terreno.

El sistema de drenaje del área de estudio se obtuvo a partir del modelo digital de elevaciones DEM, generando los drenajes de la zona de estudio para luego calcular su densidad en km/km². La densidad de drenaje en el área se reclasifico en cinco zonas, el peso más alto es asignado a la densidad alta, debido que en la zona los manantiales alimentan los caudales de los cauces influyendo en la capacidad de los pozos ubicados en la cercanía de los ríos. Al contrario de las zonas con poca densidad, asignadoles pesos más bajos (Mapa 4.9).

4.1.5.3 Proceso de Análisis Jerárquico (AHP)

La influencia y la importancia de cada variable se defino realizado una matriz por pares, evaluando los factores en una escala de 1 a 9, como se muestra en la Ilustración 3.3. La cual fue establecida por Saaty y ha establecido como base los resultados las opiniones y el conocimiento de expertos, obteniendo como resultado la Tabla 4.9.

Una vez generada la matriz de comparaciones pareadas, se calculó el peso normalizado (W) para cada capa temática los cuales se obtuvieron dividiendo el peso asignado a cada capa entre la sumatoria de la columna, mostrados en la Tabla 4.10.

Para verificar la validez de los pesos normalizados obtenidos fue necesario calcular la relación de consistencia (CR) de acuerdo a la ecuación

$$CR = CI/RCI$$
 Ecuación 4.1

Donde, RCI: valor del índice de consistencia aleatorio él cual depende del orden de la matriz. En este caso para el orden n: 6, el RCI es de 1, 24 (Tabla 4.7)

Tabla 4.7Orden de la matriz RCI

	1	2	3	4	5	6	7	8	9	10	11	12
Valor RCI	0,00	0,00	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,49	1,51	1,48

Fuente: (Saaty, 1990)

CI, es el índice de consistencia, el cual es dado por la siguiente ecuación:

$$CI = \frac{\lambda \max - n}{n - 1}$$
 Ecuación 4.2

Dónde:

 λ max = es el valor propio principal de la matriz y se calculó a partir del cociente obtenido que en este caso fue 6,63

n= es el número de factores considerados para el análisis de favorabilidad hidrogeológica, el cual es 6.

Se obtuvo: CI= 0,13 y CR= 0,13/1,24= 0,10.

Obteniendo una matriz con pesos consistente. Se indica que el valor de CR no debe de ser mayor que 0,10 para que los pesos normalizados sean consistentes; de lo contrario, los pesos correspondientes deberían ser verificados para evitar incoherencias (Saaty, 1990).

Tabla 4.8

Valores de CI y CR obtenidos para este estudio

CI	0,13
RCI	1,24
CR	0,10

Tabla 4.9Matriz de comparación por pares para el proceso AHP

Capas temáticas	Litología	D.L	D.D	TPI	C. Inf	C. As
Litología	1,00	3,00	7,00	3,00	3,00	1,00
Densidad de lineamiento	1/3	1,00	3,00	1/7	1/5	1/9
densidad de drenaje	1/7	1/3	1,00	1/7	1/7	1/9
TPI	1/3	7,00	7,00	1,00	3,00	1/3
Capacidad de infiltración	1/3	5,00	7,00	1/3	1,00	1/5
Concentraciones de arsénico	1,00	9,00	9,00	3,00	5,00	1,00
Suma	3,14	25,33	34,00	7,62	12,34	2,76

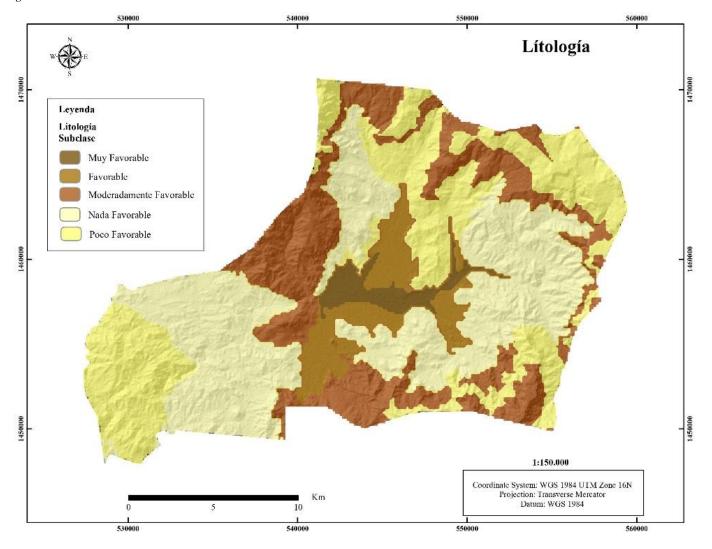
Fuente: Elaboración propia

Tabla 4.10Pesos normalizados y ponderados para cada capa temática

	Pesos Normalizados de cada capa temática									
Capas temáticas		Litología	D.L	D.D	TPI	C.Inf	C. As	Suma Filas	W	
Litologìa		0,32	0,12	0,21	0,39	0,24	0,36	1,64	0,27	
Densidad de lineamie	ento	0,11	0,04	0,09	0,02	0,02	0,04	0,31	0,05	
densidad de drenaje		0,05	0,01	0,03	0,02	0,01	0,04	0,16	0,03	
TPI		0,11	0,28	0,21	0,13	0,24	0,12	1,08	0,18	
Capacidad de infiltra	ción	0,11	0,20	0,21	0,04	0,08	0,07	0,71	0,12	
Concentraciones de arsénico		0,32	0,36	0,26	0,39	0,41	0,36	2,10	0,35	
	Suma	1,00	1,00	1,00	1,00	1,00	1,00		1,00	

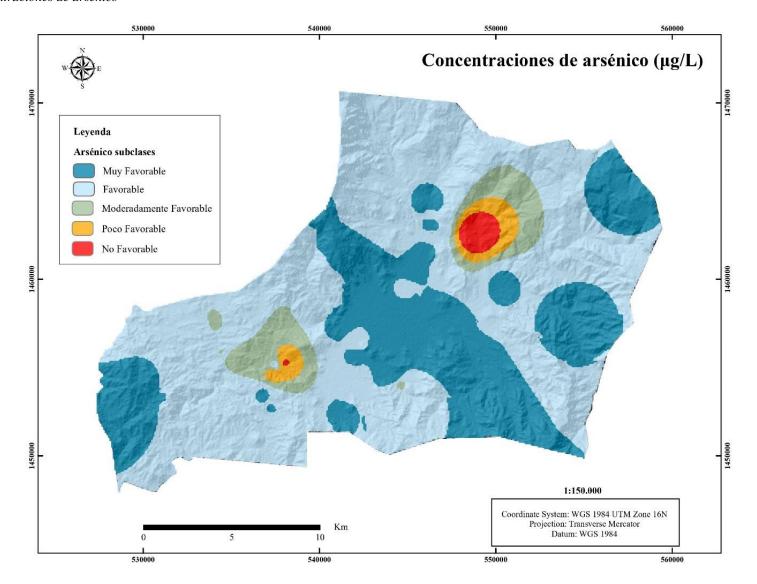
Fuente: Elaboración propia

Tabla 4.11Rankings y pesos normalizados por cada subclase

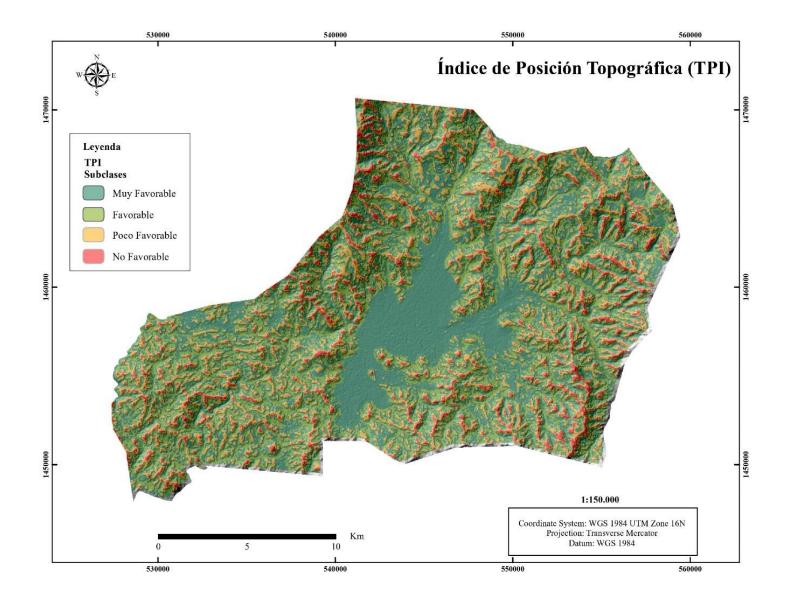

Capa temática	Subclase	Ranking	Peso normalizado (W)
	aluvial	9	0.200
	indeferenciado	8	0.178
	terraza	8	0.178
	basalto	3	0.067
Litología	dacita tobácea	4	0.089
ZAWA GILL	andesita	2	0.044
	Intrusivo	2	0.044
		2	0.044
	Agua Sarca Riolita	3	0.044
		_	
	ignimbrita	4	0.089
		45	1.000
	1.168	2	0.083
	5.169	3	0.125
Densidad de lineamiento	11, 526	5	0.208
	17.320	6	0.250
	113, 911	8	0.333
		24	
	43811	7	0.350
B	21390	6	0.300
Densidad de drenaje	14073	4	0.200
	8567	2	0.100
	2017	1	0.050
		20	
	cimas	1	0.042
	Pendiente pronunciada	2	0.083
TPI	planicie	9	0.375
	Pendiente suave	3	0.125
	valle	9	0.375
	vane	24	0.373
		24	
	(Cmass) frames are mass (20, 25 mm; 4-)	9	0.210
	(Grueso) franco arenoso(20-25 mm/h)	9 7	0.310
<u> </u>	(Medio) Franco arenoso limoso (15-20 mm/h)		0.241
Capacidad de infiltración	(Fina) Franco arcilloso (5-10 mm/h)	5	0.172
	(Fina) Arcillo arenoso (8-10 mm/h)	5	0.172
	(Muy fina) Arcilla pesada (8 mm/h)	2	0.069
	Basamento rocoso <8 mm/h	1	0.034
		29	
	0-1	9	0.231
	1-2	8	0.205
	2-3	8	0.205
Concentraciones de arsénico	3-5	6	0.154
	5-9	5	0.128
	9-14	2	0.051
	14-21	1	0.026
		39	

Fuente: Elaboración propia

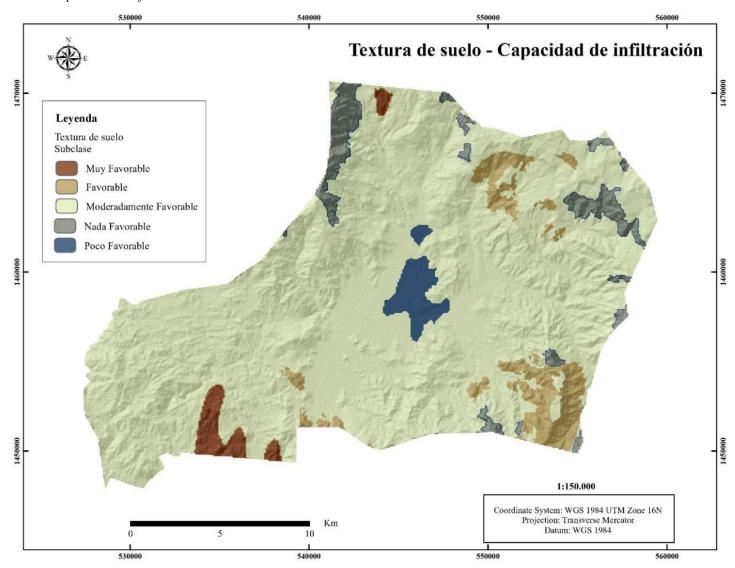
Capas temáticas reclasificadas


Mapas 4.4

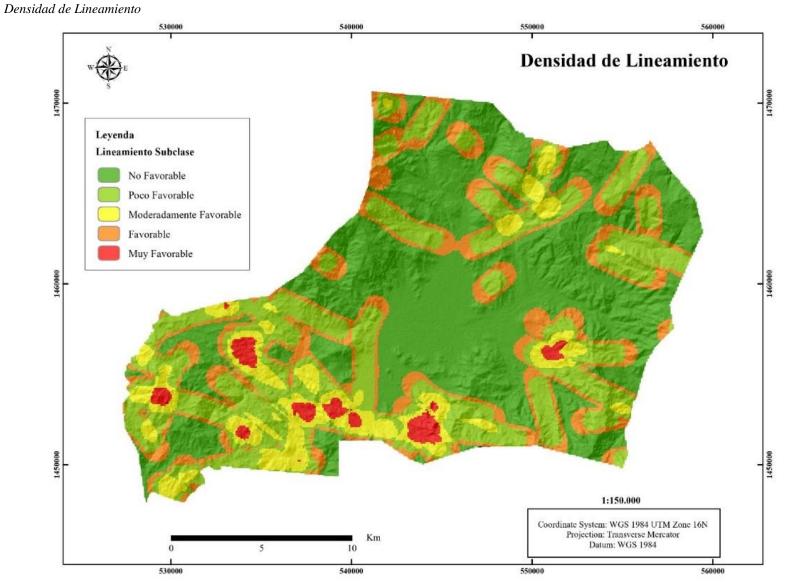
Litología


Mapas 4.5

Concentraciones de arsénico

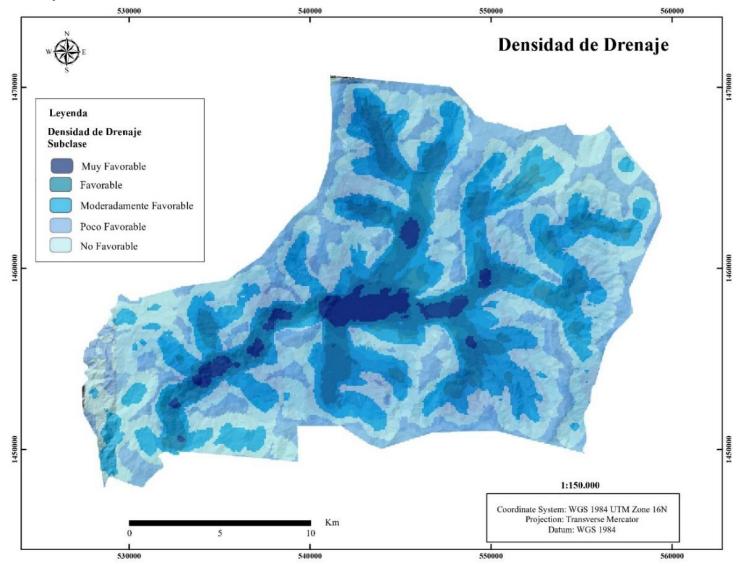

Mapas 4.6

TPI



Mapas 4.7

Textura del suelo - Capacidad de infiltración



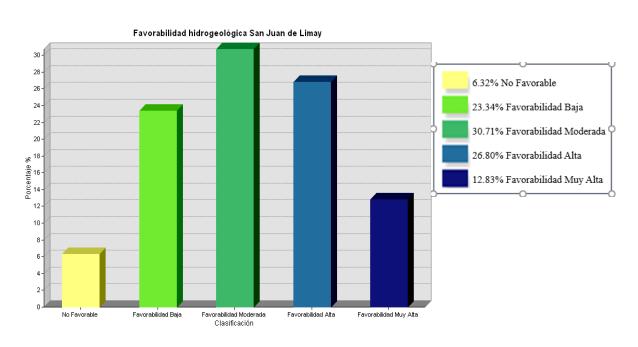
Mapas 4.8

Mapas 4.9

Densidad de Drenaje

4.1.5.4 Generación del mapa de favorabilidad hidrogeológica

Todas las capas temáticas fueron procesadas en el modelo de datos Ráster, las cuales fueron reclasificadas con el peso establecido en la matriz (Tabla 4.11) para finalmente calcular el GWFI mediante la superposición o combinación lineal ponderada en ArcGis (Ecuación 3.4).


4.1.6 Delimitación de zonas hidrogeológicamente favorables

El mapa de favorabilidad hidrogeológica se clasificó en 5 zonas de acuerdo el esquema metodológico, que van desde zonas no favorables, favorabilidad baja, favorabilidad moderada, favorabilidad alta y favorabilidad muy alta (Mapa 4.10).

El análisis de las zonas con favorabilidad hidrogeológica muestra que las zonas con mayor favorabilidad constituyen el 12,83 % del municipio de San Juan de Limay, favorabilidad alta es constituida por el 26,80 %, la zona de favorabilidad moderada ocupa la mayor extensión de área con 30,71 %; mientras tanto las zonas con favorabilidad baja constituyen un 23,34% y las zonas no favorables un 6,32 % (lustración 4.12).

Ilustración 4.13

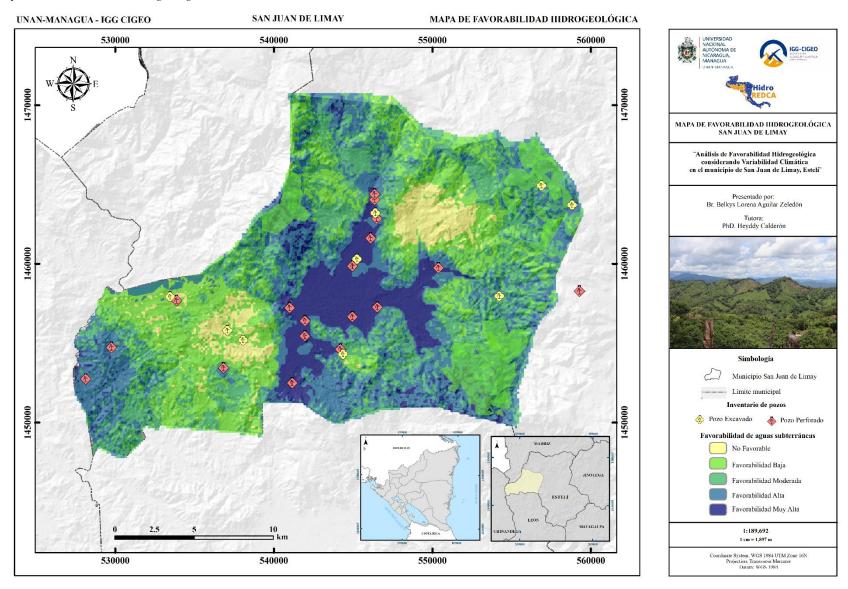
Porcentaje de zonas de favorabilidad de aguas subterráneas

La superposición de los mapas con el mapa de favorabilidad hidrogeológica encuentra que el área con favorabilidad muy alta comprende parte de los depósitos Cuaternarios aluviales, un área sin presencia de arsénico, zonas de valles y planicies y una textura de suelo moderada lo que favorece al potencial de las aguas.

Zonas con una favorabilidad alta se caracterizan por presencia de materiales volcánicos fracturados que permiten la infiltración y recarga hídrica. Según (Ahmadi et al., 2021) la existencia de fracturas sobre rocas ígneas es eficaz para la recarga de aguas subterráneas

Las zonas con favorabilidad moderada, se caracterizan por zonas de pendientes medias y valles, una densidad alta de drenaje y lineamientos y una textura de suelo moderada. Las zonas con favorabilidad moderada tienen una distribución amplia en todo el municipio.

Por último, las zonas con poca favorabilidad o no favorables presentan características topográficas con pendientes pronunciadas, cimas, concentraciones de arsénico fuera de los límites establecidos, basamento rocoso y una baja densidad de lineamiento.


El mapa de favorabilidad es de gran relevancia ya que muestra las zonas más significativas y sitios idóneos para la exploración de aguas subterráneas. Siendo una herramienta eficiente en la toma de decisiones para la gestión sostenible de los recursos de agua subterránea.

4.1.7 Favorabilidad Hidrogeológica y Variabilidad Climática

Los resultados observados en el SPI muestran que casi el 50% del período estudiado abarca años con anomalías negativas presentando precipitaciones por debajo de los promedios. De manera que las zonas favorables hidrogeológicamente pueden verse limitadas en cuanto a mecanismos de recarga para los acuíferos por el déficit hídrico que se presenta en temporadas.

Mapas 4.10

Mapa de Favorabilidad Hidrogeológica

5. CAPÍTULO V

5.1 CONCLUSIONES

♣ El área de investigación está asentada sobre materiales de origen volcánico que datan desde la época del Eoceno hasta el Cuaternario volcánico. Así como materiales de origen aluvial en las zonas más bajas.

En el municipio existe la presencia de rocas de tipo intrusivas y extrusivas, con diferencia en los grados de erosión, meteorización, alteración y fracturamiento de las mismas.

Las unidades pertenecientes a los grupos no disponen de una secuencia uniforme dentro del área, así mismo, presentan variabilidad en cuanto a textura, contenido mineral y contacto entre las unidades.

♣ De acuerdo a los parámetros físicos-químicos obtenidos y la comparación con las normas establecidas en la legislación nicaragüense, se deduce que las concentraciones y los niveles en la mayoría de los pozos muestreados se encuentran dentro de los rangos recomendados, por lo tanto, el agua se puede utilizar para uso y consumo.

Las concentraciones de arsénico se encuentran distribuidas heterogéneamente en el municipio. En la zona Noreste y Suroeste del municipio se encuentran pozos con un contenido mayor a 10 μS/L, estando en rangos mayores a lo recomendado por la normas, al contrario de la zona Centro y Sureste del municipio, que poseen pozos con concentraciones admisibles, considerándose idónea para consumo humano.

La variabilidad de las precipitaciones en el municipio se presenta de forma continua durante el registro analizado. La aplicación del Índice de precipitación estandarizado (SPI) mostró que el municipio ha experimentado variabilidad climática, teniendo condiciones de precipitaciones por debajo de los promedios mensuales.

Las variaciones en los rangos de precipitación pueden tener una relación con las fluctuaciones en los niveles de aguas subterráneas, influenciados por los valores mostrados en el SPI.

Los factores que más influyentes en el análisis de favorabilidad fue la geología, concentraciones de arsénico y la topografía del municipio, siendo estos indicadores del potencial hídrico. Siendo las zonas más óptimas las que presentan favorabilidad muy alta y favorabilidad alta.

♣ Tomando en cuenta la variabilidad climática en el municipio la favoribilidad será mayor en el período que se presenten precipitaciones por encima del promedio, mientras que en períodos de déficit hídrico se podrán ver afectadas de manera negativa en cuanto a la recarga en los acuíferos, debido a las variaciones en las precipitaciones.

Así mismo, el enfoque AHP basado en SIG se puede aplicar con éxito para el mapeo de zonas con favorabilidad hidrogeológica, obteniendo como resultado el mapa de favorabilidad que será de utilidad para los planificadores en la gestión de recursos hídricos y la evaluación integral del desarrollo de la exploración de aguas subterráneas para la planificación futura.

Los resultados generales concluyen que la metodología AHP junto con la opinión de expertos ayuda a construir un modelo hidrogeológico prospectivo del área, aplicado sobre todo en regiones con escacez de datos, siendo una herramienta eficiente en la toma de decisiones para la gestión sostenible de los recursos de agua subterránea, reduciendo tiempo, costos y minimizando así, el riesgo de pozos mal ubicados.

5.2 RECOMENDACIONES

♣ Se sugiere realizar estudios más a detalle en el municipio desde el aspecto geológico, a fin de conocer y poder definir las unidades litológicas presentes en el área, su distribución, espesor aparente, el límite de contacto entre cada unidad y la disposición de fallas y fracturas en el municipio.

Llevar a cabo un control sistemático de la calidad de las aguas subterráneas, que permita conocer los posibles cambios en la calidad de las mismas según la variación estacional, siempre teniendo en cuenta los valores recomendados y admisibles por las normas nicaragüenses y las normas CAPRE.

♣ Monitorear las concentraciones de arsénico en las aguas subterráneas, y de ser necesario ejecutar métodos para la reducción de arsénico en los pozos que presenten concentraciones más arriba del nivel admisible. De igual manera inspeccionar el uso que se les a los pozos con altas concentraciones, con el propósito de evitar el consumo.

♣ Se propone realizar un análisis con el Índice de precipitación estandarizado tomando períodos más extensos, y poder observar de manera más detallada los períodos de sequía, la variabilidad de las precipitaciones y su impacto.

Teniendo en cuenta que los impactos en las fluctuaciones de los niveles piezométricos debe determinarse más detalladamente mediante modelos de aguas subterráneas. De igual manera se recomienda el diseño de estrategias de mitigación y adaptación a la variabilidad climática.

♣ Finalmente se sugiere realizar estudios hidrogeológicos más a detalle tomando en cuenta las zonas más óptimas hidrogeológicamente delimitadas en esta investigación, para la ubicación de futuros pozos.

5.3 REFERENCIAS

- (OMM), & Global Water Partnership (GWP). (2016). Manual de indicadores e índices de sequía. In *Programa de gestión integrada de sequías*.
- Ahmadi, H., Kaya, O. A., Babadagi, E., Savas, T., & Pekkan, E. (2021). GIS-Based Groundwater Potentiality Mapping Using AHP and AHP and FR Models in Central Antalya, Turkey. *Environmental Sciences Proceedings*, 1–15.
- Álvarez, J., Henar, J., & Martínez, J. (2019). Evolución tectónica de Centroamérica. In *Enseñanza de las Ciencias de la Tierra* (Issue 356, p. 7). Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Geología, Universidad Complutense de Madrid.
- Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP Techniques Based

 Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats,

 India. *Scientific Reports*, 9(1), 1–17. https://doi.org/10.1038/s41598-019-38567-x
- Bendaña, G. (2018). Breve Caracterización de la Situación Agropecuaria e Hidrológica del Norte del Corredor Seco de Nicaragua. *Revista de Temas Nicaragüenses*, 118 (2), 26. www.guillermobendana.com
- Bendaña, Guillermo. (2012). Agua, agricultura y seguridad alimentaria en las zonas secas de Nicaragua.
- Bernardes, J., Trovo, D., & Yoshinaga, S. (2017). Uso de geotecnologias na avaliação da favorabilidade hidrogeológica em aquíferos fraturados. *Águas Subterrâneas*, *31*(3), 15. https://doi.org/10.14295/ras.v31i3.28773
- Bonilla, A. (2014). Patrones de sequía en Centroamérica. www.gwpcentroamerica.org BVSDE, N., & OPS, N. (2020). Caracterización San Juan de Limay.

- Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua
 - http://biblioteca.enacal.com.ni/bibliotec/Libros/enacal/Caracterizaciones/Esteli/SanJuan deLimay.html
- Normas de calidad del agua para consumo humano., (1994). CAPRE
- Chavarria, H., & Martínez, A. (2017). Caracterización de las condiciones geológicas para el diseño de cosechas de agua en las comunidades de Ocotillo y La Grecia, Municipio de San Juan de Limay, Estelí. UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA, UNAN-Managua.
- Cortez, A., Orlando Olivares, B., Mayela Parra, R., Lobo, D., Rey B, J. C., & Rodríguez, M. F. (2018). Descripción de los eventos de sequía meteorológica en localidades de la Cordillera Central, Venezuela. *Ciencia, Ingenierías y Aplicaciones*, 1(1), 23–45. https://doi.org/10.22206/CYAP.2018.V1I1.PP23-45
- Custodio, E., & Llamas, M. R. (1983). Hidrologia Subterranea (Segunda Ed).
- Eastman, R. (2012). IDRISI Selva. Guía para SIG y procesamiento de imágenes. *Clark University*, *53*(9), 321.
- FAO. (2007). Los Recursos Hídricos de Nicaragua. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura, 217, 78.
- Freeze, R. A., & Cherry, J. A. (1979). *GROUNDWATER* (N. . Prentice-Hall. Inc., Englewood Cliffs (ed.); 07632 ed.). https://gw-project.org/books/groundwater/
- Geffenberger, K. (1967). Conceptos básicos de la hidrogeología. In *Angewandte Chemie International Edition*, 6(11), 951–952.
- Global Water Partnership (GWP). (2017). Situación de los recursos hídricos en Centroamérica: hacia una gestión integrada. *Global Water Partnership Central America*, 102.

- Gonzalez, B., Heijman, S. G. J., Rietveld, L. C., & van Halem, D. (2019). Arsenic removal from geothermal influenced groundwater with low pressure NF pilot plant for drinking water production in Nicaraguan rural communities. *Science of the Total Environment*, 667, 297–305. https://doi.org/10.1016/j.scitotenv.2019.02.222
- Gonzalez Rodriguez, B., Rietveld, L. C., Longley, A. J., & van Halem, D. (2019). Arsenic contamination of rural community wells in Nicaragua: A review of two decades of experience. *Science of the Total Environment*, 657, 1441–1449. https://doi.org/10.1016/j.scitotenv.2018.12.168
- GWP. (2016). Gestión integrada de los recursos hídricos en Centroamérica: gestionando las aguas transfronterizas como desafío primordial. www.gwp.org
- Hernández, R. (2014). *Metología de la investigación* (S. A. D. C. V. McGRAW-HILL / INTERAMERICANA EDITORES (ed.); 6a Edición).
- Hodgson, G. (2000). Geología Regional de Nicaragua. Introducción al léxico estratigráfico de Nicaragua.pdf.
- INETER, ANA, UNI, & GIZ. (2014). Cuencas Hidrográficas de Nicaragua bajo la metodología Pfafstetter. http://www.ana.gob.ni/DocumentosSiAGUA/slideshow/Album Cuencas Nic Revisado.pdf
- James, K. (2020). Structural geology: From local elements to regional synthesis. In *Central America, Two Volume Set* (EDS 1, p. 45). https://doi.org/10.1201/9780203947043-18
- Khan, S., Gabriel, H. F., & Rana, T. (2008). Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas. *Irrigation and Drainage*Systems, 22(2), 159–177. https://doi.org/10.1007/s10795-008-9049-3
- Lillo, J. (2008). Peligros geoquímicos: arsénico de origen natural en las aguas. In Gemm.

- Análisis de favorabilidad hidrogeológica considerando variabilidad climática, en el municipio de San Juan de Limay, Estelí, Nicaragua
 - http://www.aulados.net/GEMM/Documentos/Peligros_geoquimicos_As/Peligros_As_2.pdf
- Macas Espinosa, V. X., & López Escobar, K. F. (2018). Potencial para la exploración de aguas subterráneas en la Demarcación Hidrodráfica Puyango Catamayo, Ecuador, utilizando un proceso de análisis jerárquico basado en SIG y teledetección. *Revista de Teledeteccion*, 2018(51), 12. https://doi.org/10.4995/raet.2018.7592
- Madrucci, V., Taioli, F., & de Araújo, C. C. (2008). Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. *Journal of Hydrology*, 357(3–4), 22. https://doi.org/10.1016/j.jhydrol.2008.03.026
- McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The Relationship of Drought Frequency and Duration to time scales. *Eighth Conference on Applied Climatology*, *105*, 6. https://doi.org/10.1002/jso.23002
- Molinero, J. (2005). HIDROGEOLOGÍA: Tipos de acuíferos (p. 30).
- Morán-Zenteno, D. J., Keppie, D. J., Martiny, B., & González-Torres, E. (2009).

 Reassessment of the Paleogene position of the Chortis block relative to southern

 Mexico: Hierarchical ranking of data and features. *Revista Mexicana de Ciencias Geológicas*, 26(1), 12.
- Ordoñez, J. . (2011). Cartilla Técnica: Aguas Subterráneas Acuíferos. *Sociedad Geografica de Lima*, 2–44.
- Organización Mundial de la Salud. (2012). Guias de la OMS para la calidad del agua potable. In *Agua saneamiento y salud ASS* (pp. 243–363).
 - http://www.who.int/water_sanitation_health/dwq/guidelines/es/index.html
- Otálvaro, M. V. (1999). Hidraulica de Aguas Subterráneas (Issue January 1999).

- Picado, G., & Ortiz, R. (2021). Estudio Geotécnico para el análisis de inestabilidad de ladera al Noroeste del Mirador de Catarina.
- Ponnusamy, D. (2020). Mapping of Potential Groundwater Recharge Zones: A Case Study of Maputaland Coastal Plain, South Africa. *Research Square*. https://doi.org/https://doi.org/10.21203/rs.3.rs-566699/v1 License:
- Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015).

 Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. *Arabian Journal of Geosciences*, 8(9), 7059–7071.

 https://doi.org/10.1007/s12517-014-1668-4
- Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. *European Journal of Operational Research*, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
- Sanchez, F. J. (2009a). Conceptos fundamentales de Hidrogeologia. In *Departamento de geologia, universidad de salamanca, España* (Vol. 1). http://hidrologia.usal.es/temas/Conceptos_Hidrogeol.pdf
- Sanchez, F. J. (2009b). Ley de Darcy. Conductividad hidráulica. In *Departamento de geologia, universidad de salamanca, España*.
- Schliz, M. (2009). Interpertración Geoestructural de las Hojas Topográficas de Cinco Pinos y San Juan de Limay en el NW de Nicaragua. Universidad Nacional Autónoma de Nicaragua.
- Solé, J. M., Arasa, R., Picanyol, M., González, M. Á., Domingo-Dalmau, A., Masdeu, M., Porras, I., & Codina, B. (2016). Assessment of Climate Change in Nicaragua: Analysis of Precipitation and Temperature by Dynamical Downscaling over a 30-Year Horizon.

Atmospheric and Climate Sciences, 06(03), 445–474.

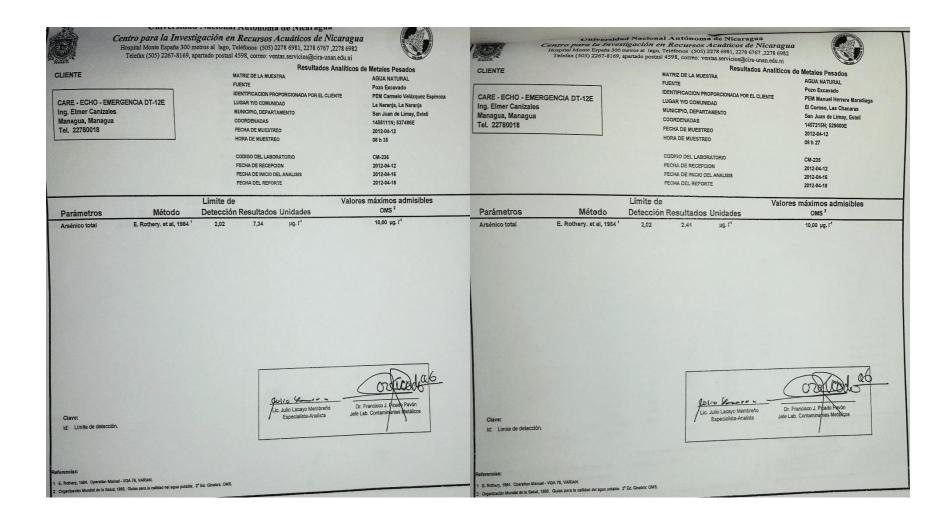
https://doi.org/10.4236/acs.2016.63036

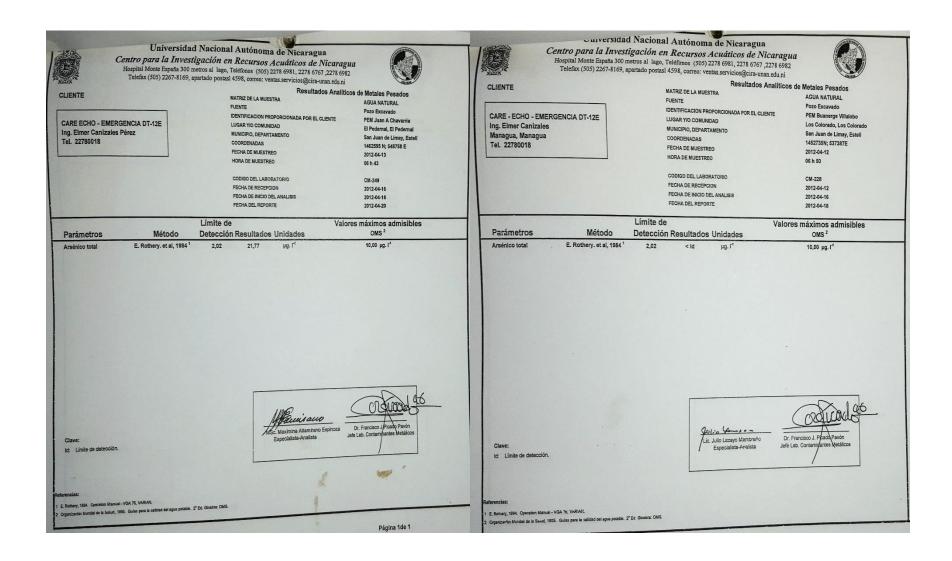
TAIWAN ICDF, SINAPRED, & INETER. (2019). Informe de Mapas Nacionales de Destastre Potencial en Nicaragua de 2019.

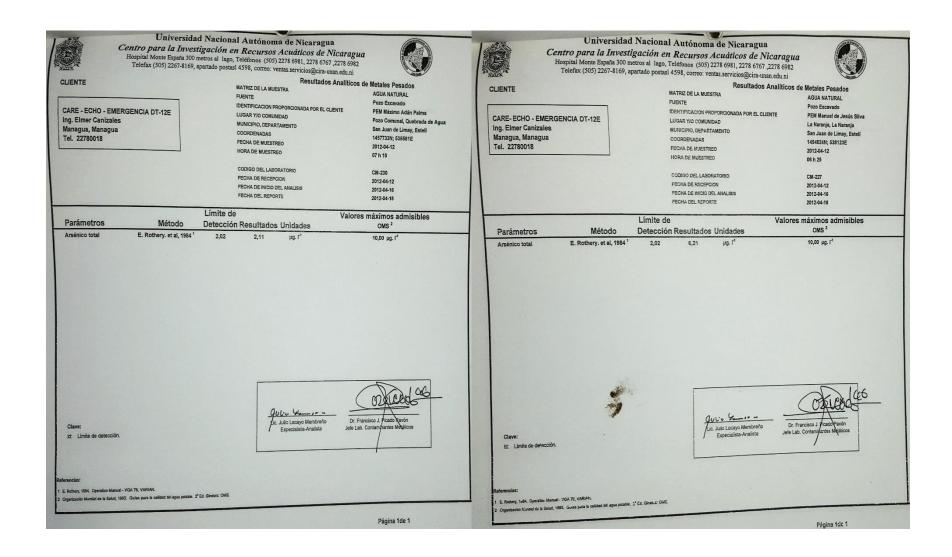
Weiss, A. D. (2001). Topographic Position and Landforms Analysis. *The Nature Conservancy*, 64, 1.

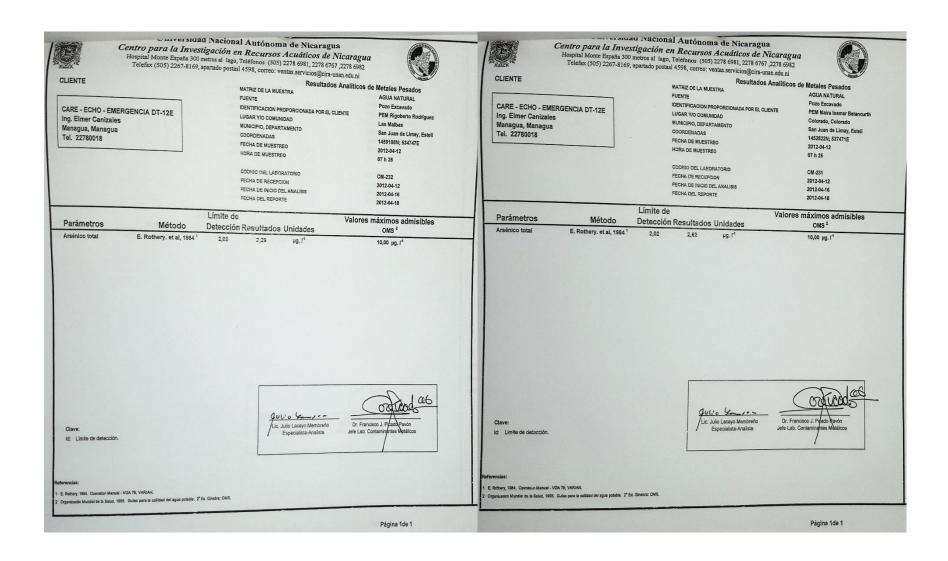
 $http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Topographic+Position\\ + and + Landforms + Analysis \#0$

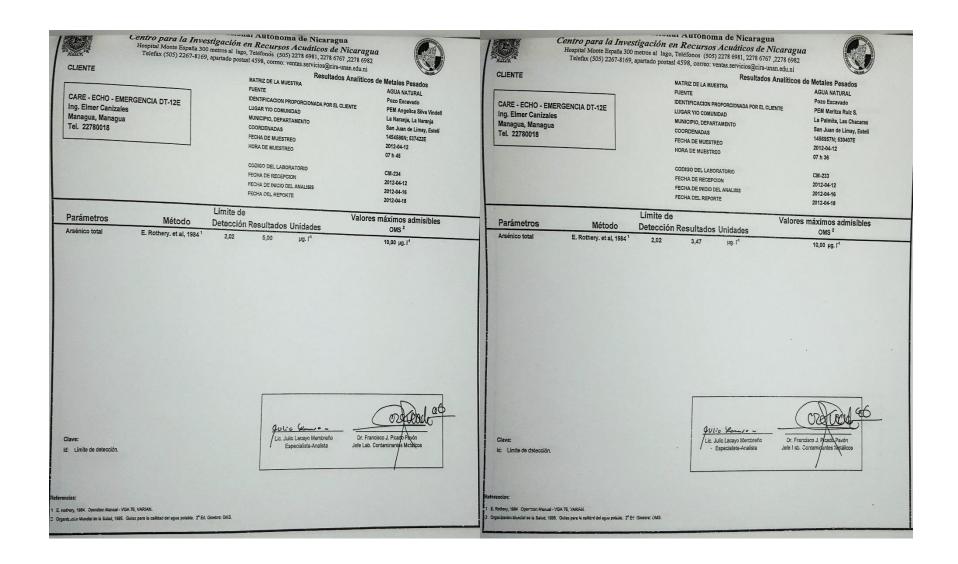
6. ANEXOS

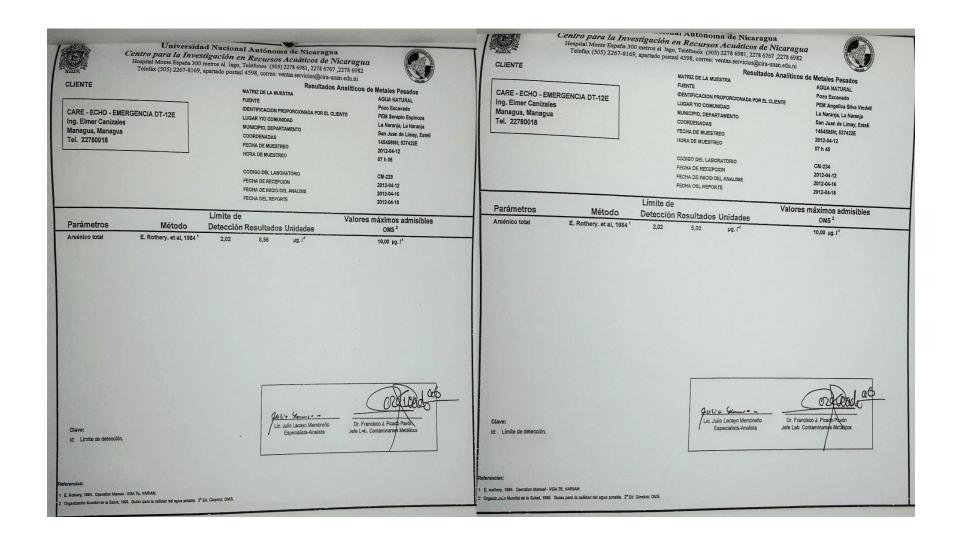

Anexo 6.1

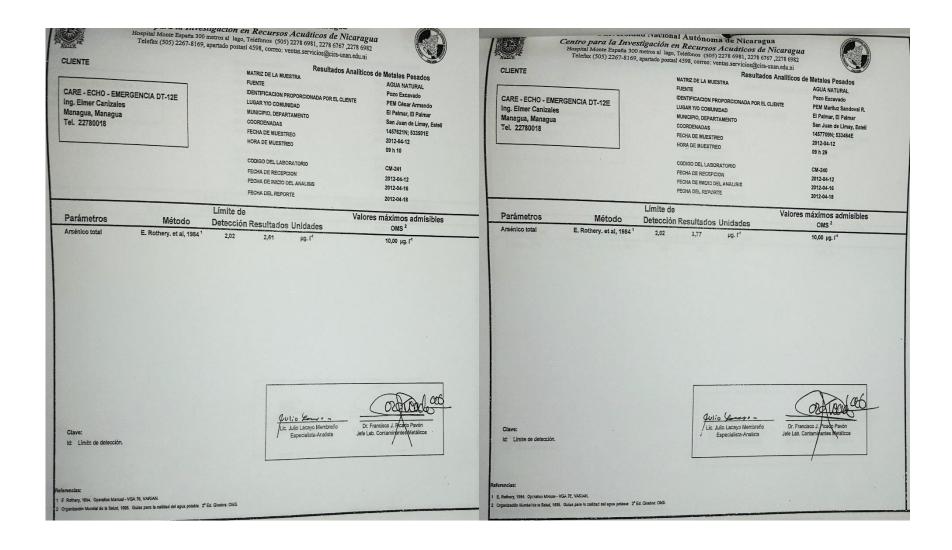

Datos de concentraciones de arsénico

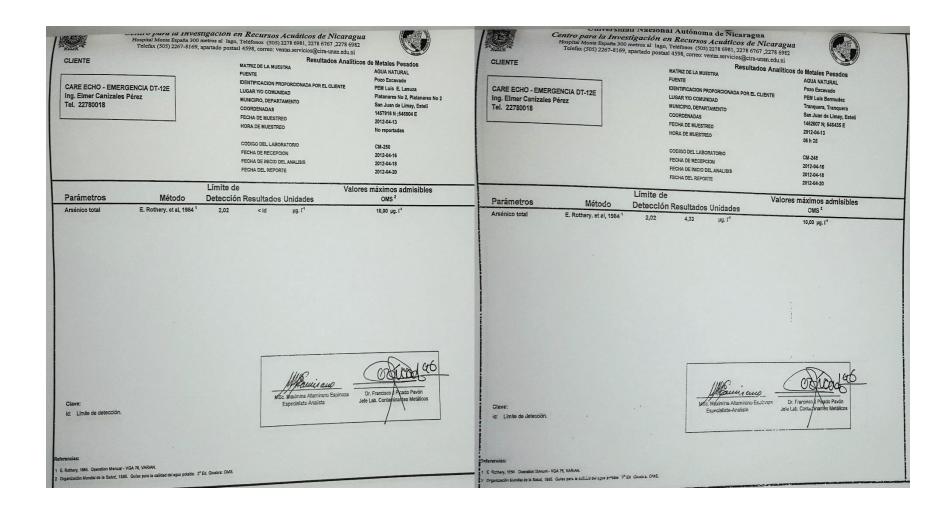

Tabla 6.1Concentraciones de arsénico San Juan de Limay

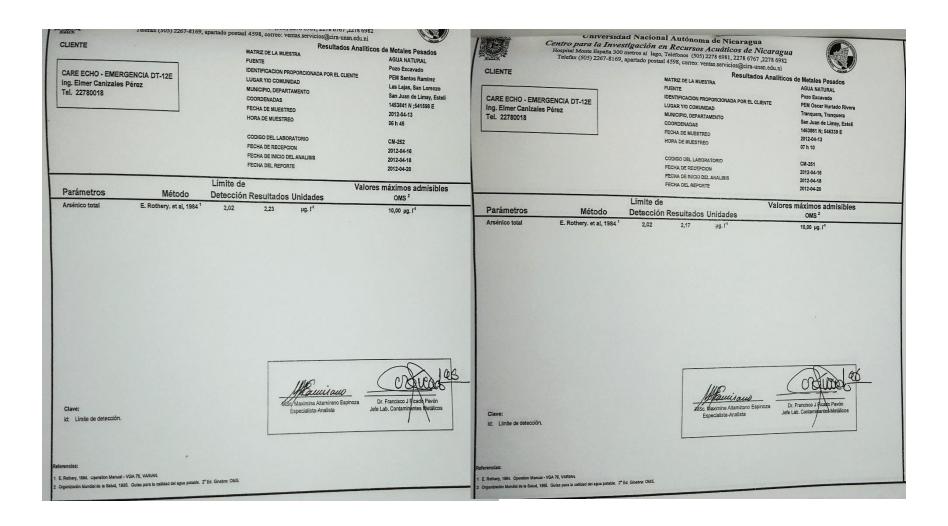

Comunidad	Fecha	Código	X	Y	Tipo de f	uente	As (μg/L)
El Coroso	12/04/2012	CM-235	529600	1457215	Pozo Exacabado	Agua natural	2,41
El Morzillo	16/04/2012	CM-259	544114	1454588	Pozo Exacabado	Agua natural	0
Los Enramados	16/04/2012	CM-258	544600	1454029	Pozo Exacabado	Agua natural	5,58
Las Lajas	16/04/2012	CM-257	541853	1454694	Pozo Exacabado	Agua natural	3,05
Mateare	16/04/2012	CM-255	544990	1459613	Pozo Exacabado	Agua natural	2,02
Red de Esperanza	16/04/2012	CM-254	544938	1456454	Pozo Exacabado	Agua natural	0
Tranquera	16/04/2012	CM-253	546327	1462875	Pozo Exacabado	Agua natural	0
Las Lajas	16/04/2012	CM-252	541598	1453841	Pozo Exacabado	Agua natural	2,23
Tranquera	16/04/2012	CM-251	546339	1463861	Pozo Exacabado	Agua natural	2,17
Platanares #2	16/04/2012	CM-250	546904	1457916	Pozo Exacabado	Agua natural	0
Tranquera	16/04/2012	CM-248	546435	1462607	Pozo Exacabado	Agua natural	4,33
El Palmar	12/04/2012	CM-241	533501	1457621	Pozo Exacabado	Agua natural	2,61
El Palmar	12/04/2012	CM-240	533464	1457709	Pozo Exacabado	Agua natural	3,77
La Naranja	12/04/2012	CM-229	537422	1454586	Pozo Exacabado	Agua natural	8,86
La Naranja	12/04/2012	CM-234	537422	1454586	Pozo Exacabado	Agua natural	5
La Palmita	12/04/2012	CM-233	530407	1456957	Pozo Exacabado	Agua natural	3,47
Las Malbas	12/04/2012	CM-232	534747	1459108	Pozo Exacabado	Agua natural	2,29
Colorado	12/04/2012	CM-231	537471	1452822	Pozo Exacabado	Agua natural	2,62
Quebrada de Agua	12/04/2012	CM-230	535581	1457733	Pozo Exacabado	Agua natural	2,11
La Naranja	12/04/2012	CM-227	538123	1454824	Pozo Exacabado	Agua natural	6,21
Los Colorados	12/04/2012	CM-228	537387	1452735	Pozo Exacabado	Agua natural	0
El Pedernal	16/04/2012	CM-249	548758	1462595	Pozo Exacabado	Agua natural	21,77
La Naranja	12/04/2012	CM-236	537486	1455111	Pozo Exacabado	Agua natural	2,02

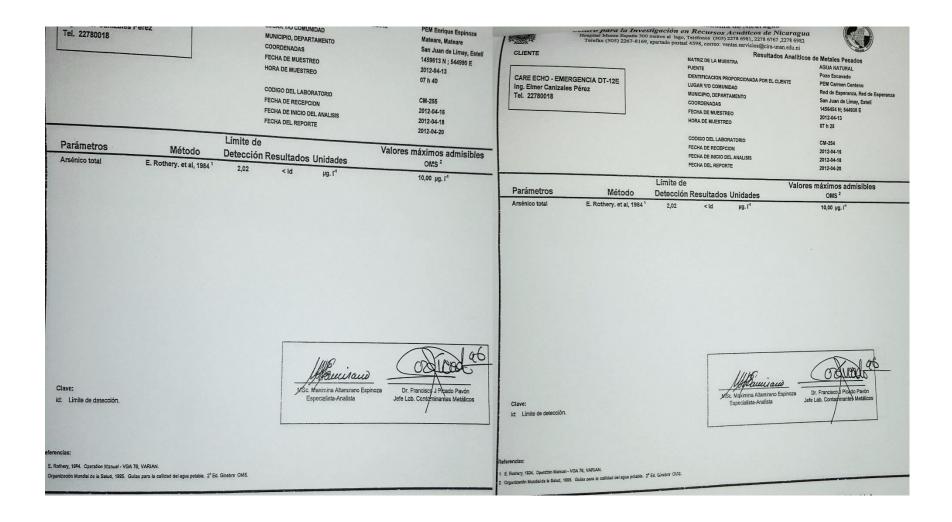

Fuente: Elaboración propia, basado en datos proporcionados por el Centro de Investigación de Recursos Acuáticos (CIRA, 2012)

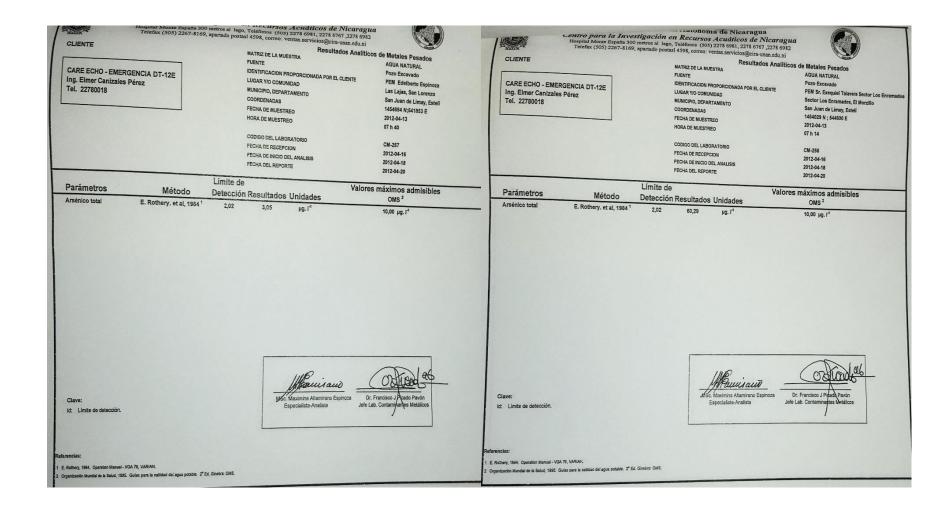


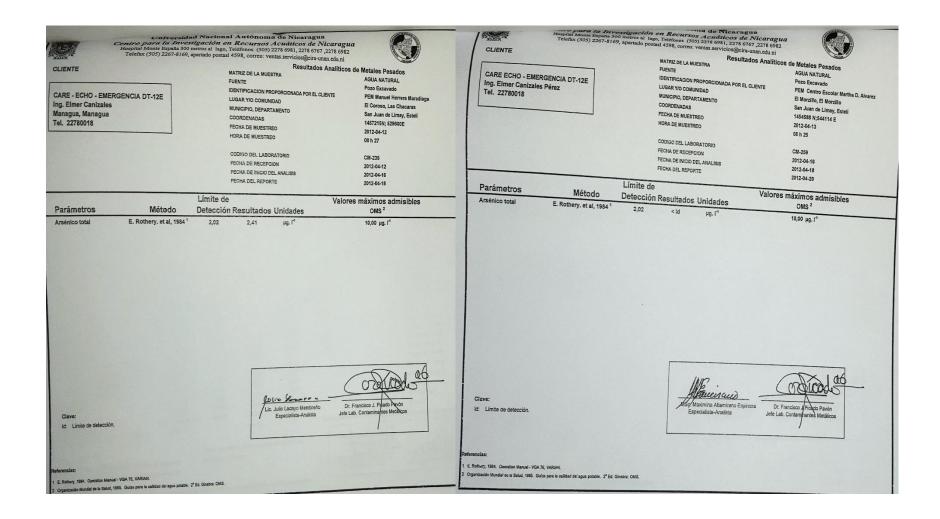












Anexo 6.2

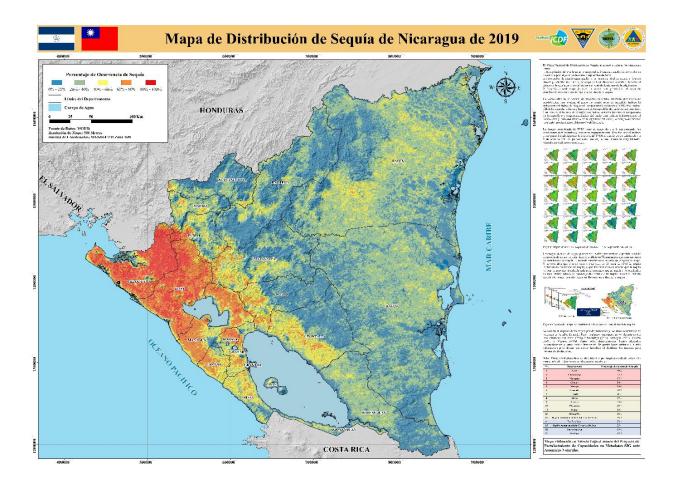
Cálculo de Índice de Precipitación Estandarizado (SPI)

Años		Precipitación	(Pm12months)/12	Ln	GAMMA	SPI	
2002	1	11,40	,				
2002	2	5,10					
2002	3	3,30					
2002	4	2,70					
2002	5	139,30					
2002	6	180,30					
2002	7	155,40					
2002	8	72,60					
2002	9	169,20					
2002	10	156,40					
2002	11	23,80					
2002	12	18,00	78,13	4,35831011	0,56392954	0,161	Aproximadamente normal
2003	1	6,60	77,73	4,35317696	0,55451877	0,137	Aproximadamente normal
2003	2	0,60	77,35	4,34834058	0,54563861	0,115	Aproximadamente normal
2003	3	10,10	77,92	4,35563988	0,55903628	0,149	Aproximadamente normal
2003	4	0,00	77,69	4,352748	0,55373161	0,135	Aproximadamente normal
2003	5	131,60	77,05	4,34445456	0,53849706	0,097	Aproximadamente normal
2003	6	270,70	84,58	4,43773724	0,70378448	0,535	Aproximadamente normal
2003	7	52,10	75,98	4,33040434	0,51266663	0,032	Aproximadamente normal
2003	8	45,70	73,73	4,30045498	0,45796565	-0,106	Aproximadamente normal
2003	9	74,90	65,88	4,18775901	0,27083554	-0,610	Aproximadamente normal
2003	10	134,00	64,01	4,15901328	0,23083905	-0,736	Aproximadamente normal
2003	11	53,30	66,47	4,19670057	0,28402775	-0,571	Aproximadamente normal
2003	12	6,20	65,48	4,18179566	0,26223132	-0,636	Aproximadamente normal
2004	1	9,60	65,73	4,18560615	0,26771119	-0,620	Aproximadamente normal
2004	2	2,80	65,92	4,18839132	0,27175706	-0,608	Aproximadamente normal
2004	3	8,00	65,74	4,18573292	0,26789459	-0,619	Aproximadamente normal
2004	4	13,20	66,84	4,20232664	0,29250311	-0,546	Aproximadamente normal
2004	5	55,40	60,49	4,10250561	0,16354234	-0,980	Aproximadamente normal
2004	6	78,30	44,46	3,79455242	0,01269076	-2,236	Extremadamente seco
2004	7	45,10	43,88	3,78134468	0,01110445	-2,287	Extremadamente seco
2004	8	46,10	43,91	3,78210413	0,01119059	-2,284	Extremadamente seco
2004	9	234,40	57,20	4,0465539	0,1117616	-1,217	Moderadamente seco
2004	10	81,70	52,84	3,96730002	0,06103924	-1,546	Severamente seco
2004	11	39,30	51,68	3,94497411	0,05078463	-1,637	Severamente seco
2004	12	3,60	51,46	3,94077242	0,04902486	-1,654	Severamente seco
2005	1	1,80	50,81	3,92806038	0,04400845	-1,706	Severamente seco
2005	2	4,10	50,92	3,93019031	0,0448175	-1,697	Severamente seco
2005	3	4,20	50,60	3,92395158	0,04248247	-1,723	Severamente seco
2005	4	33,70	52,31	3,9571557	0,05618628	-1,588	Severamente seco
2005	5	159,50	60,98	4,1106006	0,17224475	-0,945	Aproximadamente normal
2005	6	238,40	74,33	4,30844737	0,47247532	-0,069	Aproximadamente normal
2005	7	175,80	85,22	4,44519703	0,71599885	0,571	Aproximadamente normal
2005	8	81,60	88,18	4,47932348	0,76894535	0,735	Aproximadamente normal
2005	9	112,50	78,02	4,35692248	0,5613873	0,154	Aproximadamente normal
2005	10	268,10	93,55	4,53849605	0,84731463	1,025	Moderadamente húmedo
2005	11	50,30	94,47	4,54824704	0,85842617	1,073	Moderadamente húmedo
2005	12	9,00	94,92	4,55299931	0,86365078	1,097	Moderadamente húmedo

		1					
2006	1	10,50	95,64	4,56060857	0,87175554	1,135	Moderadamente húmedo
2006	2	3,50	95,59	4,56008565	0,87120884	1,132	Moderadamente húmedo
2006	3	2,40	95,44	4,55851524	0,86955791	1,124	Moderadamente húmedo
2006	4	31,00	95,22	4,556155	0,86705092	1,113	Moderadamente húmedo
2006	5	38,30	85,12	4,44402286	0,71409035	0,565	Aproximadamente normal
2006	6	255,90	86,58	4,46101109	0,7411623	0,647	Aproximadamente normal
2006	7	118,30	81,78	4,40407347	0,64632609	0,375	Aproximadamente normal
2006	8	28,50	77,36	4,34844831	0,54583652	0,115	Aproximadamente normal
2006	9	24,10	69,99	4,24837619	0,36650522	-0,341	Aproximadamente normal
2006	10	170,20	61,83	4,12444259	0,18785261	-0,886	Aproximadamente normal
2006	11	45,50	61,43	4,11795258	0,18042015	-0,914	Aproximadamente normal
2006	12	42,90	64,26	4,16291142	0,23604096	-0,719	Aproximadamente normal
2007	1	4,40	63,75	4,15496918	0,22551748	-0,754	Aproximadamente normal
2007	2	3,10	63,72	4,15444617	0,22483487	-0,756	Aproximadamente normal
2007	3	19,80	65,17	4,17694809	0,25535365	-0,658	Aproximadamente normal
2007	4	33,20	65,35	4,17975744	0,25932669	-0,645	Aproximadamente normal
2007	5	75,60	68,46	4,22622529	0,329932	-0,440	Aproximadamente normal
2007	6	107,50	56,09	4,02698726	0,09694156	-1,299	Moderadamente seco
2007	7	65,70	51,71	3,94561895	0,05105932	-1,635	Severamente seco
2007	8	133,60	60,47	4,10209225	0,16310634	-0,982	Aproximadamente normal
2007	9	189,30	74,23	4,30721329	0,47022954	-0,075	Aproximadamente normal
2007	10	292.9	60,05	4,09517755	0,15593358	-1,011	Moderadamente seco
2007	11	29,50	58,72	4,07272362	0,13419215	-1,107	Moderadamente seco
2007	12	17,20	56,58	4,03556719	0,10324097	-1,263	Moderadamente seco
2008	1	14,50	57,42	4,05033462	0,11481413	-1,201	Moderadamente seco
2008	2	7,50	57,78	4,05670038	0,12009557	-1,175	Moderadamente seco
2008	3	12,90	57,21	4,04669958	0,11187807	-1,217	Moderadamente seco
2008	4	8,70	55,17	4,01035891	0,08558781	-1,368	Moderadamente seco
2008	5	113,30	58,31	4,06574502	0,12790993	-1,136	Moderadamente seco
2008	6	119,50	59,31	4,08274982	0,14360958	-1,064	Moderadamente seco
2008	7	96,10	61,84	4,12457736	0,18800908	-0,885	Aproximadamente normal
2008	8	112,40	60,08	4,09559378	0,15635893	-1,010	Moderadamente seco
2008	9	180,50	59,34	4,0833117	0,14415114	-1,062	Moderadamente seco
2008	10	265,10	81,43	4,39978469	0,63877251	0,355	Aproximadamente normal
2008	11	1,40	79,09	4,37060752	0,58638333	0,218	Aproximadamente normal
2008	12	2,70	77,88	4,35521198	0,55825169	0,147	Aproximadamente normal
2009	1	10,40	77,54	4,35081543	0,55018406	0,126	Aproximadamente normal
2009	2	1,10	77,01	4,34391364	0,53750268	0,094	Aproximadamente normal
2009	3	0,20	75,95	4,33007523	0,51206197	0,030	Aproximadamente normal
2009	4	2,60	75,44	4,32335973	0,49973423	-0,001	Aproximadamente normal
2009	5	256,70	87,39	4,47039993	0,75559733	0,692	Aproximadamente normal
2009	6	115,30	87,04	4,46638693	0,74947544	0,673	Aproximadamente normal
2009	7	92,70	86,76	4,46312648	0,74444863	0,657	Aproximadamente normal
2009	8	20,10	79,07	4,37029138	0,58580813	0,217	Aproximadamente normal
2009	9	101,50	72,48	4,28335665	0,4272632	-0,183	Aproximadamente normal
2009	10	105,50	59,18	4,08063997	0,14158914	-1,073	Moderadamente seco
2009	11	31,90	61,73	4,12268904	0,18582447	-0,893	Aproximadamente normal
2009	12	31,20	64,10	4,16044436	0,23274054	-0,730	Aproximadamente normal
-007		0 1,20	0.,10	.,20011130	-, 100T	0,750	- promisione nomin

2010	1	5.20	(2.67	4 15266114	0.2222127	-0,759	A1
2010	1	5,20	63,67	4,15366114	0,2238127		Aproximadamente normal
2010	3	62,70	68,80	4,23120374	0,33800349	-0,418	Aproximadamente normal
2010		49,60	72,92	4,28931724	0,43790639	-0,156	Aproximadamente normal
2010	4	76,10	79,04	4,36997514	0,58523263	0,215	Aproximadamente normal
2010	5	171,80	71,97	4,27620305	0,41458735	-0,216	Aproximadamente normal
2010	6	170,10	76,53	4,33772638	0,52612616	0,066	Aproximadamente normal
2010	7	254,40	90,01	4,49990226	0,79826244	0,835	Aproximadamente normal
2010	8	373.4	88,33	4,48111754	0,77158375	0,744	Aproximadamente normal
2010	9	298,50	104,75	4,65157656	0,94466207	1,595	Muy húmedo
2010	10	134,40	107,16	4,67430749	0,95659936	1,713	Muy húmedo
2010	11	54,30	109,03	4,69157721	0,96425143	1,802	Muy húmedo
2010	12	0,80	106,49	4,66806673	0,95354125	1,680	Muy húmedo
2011	1	2,20	106,24	4,66571637	0,95234744	1,668	Muy húmedo
2011	2	1,70	101,16	4,61668695	0,92173557	1,417	Moderadamente húmedo
2011	3	14,80	98,26	4,58760006	0,89792741	1,270	Moderadamente húmedo
2011	4	0,80	91,98	4,5216074	0,82683364	0,942	Aproximadamente normal
2011	5	220,10	96,01	4,56443499	0,87570988	1,154	Moderadamente húmedo
2011	6	164,40	95,53	4,55947523	0,87056874	1,129	Moderadamente húmedo
2011	7	225,40	93,12	4,53385319	0,84183965	1,002	Moderadamente húmedo
2011	8	148,20	105,47	4,65839495	0,94847739	1,630	Muy húmedo
2011	9	220,70	98,98	4,59495149	0,90436746	1,307	Moderadamente húmedo
2011	10	240,20	107,80	4,68027766	0,95937652	1,743	Muy húmedo
2011	11	30,00	105,78	4,6613142	0,95004823	1,645	Muy húmedo
2011	12	22,00	107,54	4,67787837	0,95827758	1,731	Muy húmedo
2011	1	0,00	107,36	4,67617215	0,95748211	1,722	Muy húmedo
2012	2	12,50	107,36	4,68452035	0,95746211	1,722	Muy húmedo
2012	3	1,10	107,12	4,67391858		1,711	Muy húmedo
	4	90,10			0,95641346		•
2012	5	,	114,56	4,74108415	0,98043234	2,063	extremadamente húmedo
2012		323,00	123,13	4,81326778	0,99287367	2,451	extremadamente húmedo
2012	6	198,70	125,99	4,83621577	0,99500711	2,576	extremadamente húmedo
2012	7	56,70	111,93	4,71790346	0,97382473	1,940	Muy húmedo
2012	8	127,00	110,17	4,70199437	0,96832542	1,857	Muy húmedo
2012	9	72,70	97,83	4,58326535	0,89399329	1,248	Moderadamente húmedo
2012	10	141,10	89,58	4,49507626	0,79157664	0,812	Aproximadamente normal
2012	11	13,30	88,18	4,47941798	0,76908471	0,736	Aproximadamente normal
2012	12	17,50	87,81	4,47515641	0,76275832	0,715	Aproximadamente normal
2013	1	22,30	89,67	4,49609909	0,79300352	0,817	Aproximadamente normal
2013	2	1,20	88,73	4,4855417	0,77802395	0,766	Aproximadamente normal
2013	3	1,30	88,74	4,48572953	0,77829527	0,766	Aproximadamente normal
2013	4	1,10	81,33	4,39845347	0,63641894	0,349	Aproximadamente normal
2013	5	110,60	63,63	4,15300647	0,22296249	-0,762	Aproximadamente normal
2013	6	111,30	56,34	4,03143434	0,10016834	-1,281	Moderadamente seco
2013	7	99,30	59,89	4,09253737	0,15325464	-1,023	Moderadamente seco
2013	8	83,10	56,23	4,0295097	0,09876178	-1,289	Moderadamente seco
2013	9	293,20	74,61	4,31225221	0,47941037	-0,052	Aproximadamente normal
2013	10	170,40	77,05	4,34445456	0,53849706	0,097	Aproximadamente normal
2013	11	38,20	79,13	4,37102888	0,58714978	0,220	Aproximadamente normal
2013	12	27,70	79,98	4,38171409	0,60650308	0,270	Aproximadamente normal
		. ,	,. ~	,	,	- ,	1

2014	1	12,20	79,13	4 27112410	0.5972412	0.221	Amerima demente noma
2014	2	7,30	79,13	4,37113419	0,5873413	0,221 0,251	Aproximadamente normal
2014	3	0,50	79,58	4,37753741	0,59895837		Aproximadamente normal
	4	,	,	4,37669997	0,59744236	0,247	Aproximadamente normal
2014		0,40	79,52	4,37596664	0,59611396	0,243	Aproximadamente normal
2014	5	36,60	73,35	4,2952425	0,44855218	-0,129	Aproximadamente normal
2014	6	82,60	70,96	4,26209285	0,38994138	-0,279	Aproximadamente normal
2014	7	30,30	65,21	4,17758727	0,25625448	-0,655	Aproximadamente normal
2014	8	80,10	64,96	4,17374604	0,25086871	-0,672	Aproximadamente normal
2014	9	106,80	49,43	3,90045637	0,03459031	-1,817	Severamente seco
2014	10	310,10	61,07	4,11196616	0,17374366	-0,939	Aproximadamente normal
2014	11	54,00	62,38	4,13329815	0,19832033	-0,848	Aproximadamente normal
2014	12	8,10	60,75	4,10676708	0,16808455	-0,962	Aproximadamente normal
2015	1	11,90	60,73	4,10635547	0,16764205	-0,964	Aproximadamente normal
2015	2	11,60	61,08	4,11223905	0,17404427	-0,938	Aproximadamente normal
2015	3	6,00	61,54	4,11971445	0,18241788	-0,906	Aproximadamente normal
2015	4	57,40	66,29	4,1940642	0,2801023	-0,583	Aproximadamente normal
2015	5	3.1	63,24	4,14696337	0,21521006	-0,788	Aproximadamente normal
2015	6	231,00	75,61	4,32556651	0,50378275	0,009	Aproximadamente normal
2015	7	57,80	77,90	4,35542595	0,55864404	0,148	Aproximadamente normal
2015	8	33,40	74,01	4,3041777	0,46471345	-0,089	Aproximadamente normal
2015	9	127,50	75,73	4,3272184	0,506815	0,017	Aproximadamente normal
2015	10	133,60	61,03	4,11128362	0,17299334	-0,942	Aproximadamente normal
2015	11	58,60	61,41	4,11754555	0,17996076	-0,916	Aproximadamente normal
2015	12	12,40	61,77	4,12336384	0,18660319	-0,890	Aproximadamente normal
2016	1	0,90	60,85	4,10841182	0,16986084	-0,955	Aproximadamente normal
2016	2	1,90	60,04	4,09503877	0,15579194	-1,012	Moderadamente seco
2016	3	2,00	59,71	4,0894716	0,15018512	-1,036	Moderadamente seco
2016	4	40,20	58,28	4,06517318	0,12740498	-1,139	Moderadamente seco
2016	5	59,10	63,20	4,1463043	0,21437505	-0,791	Aproximadamente normal
2016	6	132,40	54,98	4,00703011	0,08344635	-1,382	Moderadamente seco
2016	7	71,80	56,15	4,02802668	0,09768844	-1,295	Moderadamente seco
2016	8	271,50	75,99	4,33062369	0,51306965	0,033	Aproximadamente normal
2016	9	101,00	73,78	4,30113287	0,45919293	-0,102	Aproximadamente normal
2016	10	226,60	81,53	4,40101193	0,64093856	0,361	Aproximadamente normal
2016	11	42,20	80,17	4,3841078	0,61081404	0,281	Aproximadamente normal
2016	12	46,20	82,98	4,41863978	0,67161763	0,444	Aproximadamente normal
2017	1	8,20	83,59	4,42594383	0,68406379	0,479	Aproximadamente normal
2017	2	2,90	83,68	4,42694025	0,68574839	0,484	Aproximadamente normal
2017	3	5,40	83,96	4,43032064	0,69143877	0,500	Aproximadamente normal
2017	4	101,00	89,03	4,48891723	0,78287356	0,782	Aproximadamente normal
2017	5	211,50	101,73	4,62227309	0,92580583	1,445	Moderadamente húmedo
2017	6	119,60	100,66	4,61173194	0,91799242	1,392	Moderadamente húmedo
2017	7	85,00	101,76	4,62260072	0,92603967	1,447	Moderadamente húmedo
2017	8	133,40	90,25	4,5025836	0,8019256	0,849	Aproximadamente normal
2017	9	236,10	101,51	4,6201409	0,92427081	1,434	Moderadamente húmedo
2017	10	223,60	101,26	4,61767501	0,92246699	1,422	Moderadamente húmedo
2017	11	6,60	98,29	4,58793925	0,89823095	1,272	Moderadamente húmedo
2017	12	55,00	99,03	4,59537234	0,90472736	1,309	Moderadamente húmedo
		7	,	1 / 2 2 2 2 2	, , , , , , , , ,	7 77	


				<u> </u>	T		
2018	1	7,30	98,95	4,59461467	0,90407874	1,305	Moderadamente húmedo
2018	2	22,60	100,59	4,61106942	0,91748237	1,388	Moderadamente húmedo
2018	3	2,60	100,36	4,60874711	0,91567663	1,377	Moderadamente húmedo
2018	4	17,40	93,39	4,53680212	0,84533084	1,017	Moderadamente húmedo
2018	5	231,60	95,07	4,5545784	0,86535909	1,105	Moderadamente húmedo
2018	6	152,50	97,81	4,58300978	0,89375815	1,247	Moderadamente húmedo
2018	7	22,60	92,61	4,52837913	0,83523267	0,975	Aproximadamente normal
2018	8	30,30	84,02	4,43101519	0,69260313	0,503	Aproximadamente normal
2018	9	111,30	73,62	4,29887145	0,45510141	-0,113	Aproximadamente normal
2018	10	274,50	77,86	4,35489094	0,55766295	0,145	Aproximadamente normal
2018	11	29,50	79,77	4,37910571	0,60179458	0,258	Aproximadamente normal
2018	12	12,50	76,23	4,33368949	0,51870412	0,047	Aproximadamente normal
2019	1	5,30	76,06	4,33150059	0,51468099	0,037	Aproximadamente normal
2019	2	2,20	74,36	4,30889575	0,47329174	-0,067	Aproximadamente normal
2019	3	0,20	74,16	4,30620245	0,4683914	-0,079	Aproximadamente normal
2019	4	27,00	74,96	4,3169324	0,4879613	-0,030	Aproximadamente normal
2019	5	156,00	68,66	4,22914251	0,33465075	-0,427	Aproximadamente normal
2019	6	121,30	66,06	4,19053819	0,27489887	-0,598	Aproximadamente normal
2019	7	50,00	68,34	4,22451963	0,32718753	-0,448	Aproximadamente normal
2019	8	69,50	71,61	4,27121145	0,4058116	-0,238	Aproximadamente normal
2019	9	112,50	71,71	4,27260697	0,40825904	-0,232	Aproximadamente normal
2019	10	212,20	66,52	4,19745254	0,28515283	-0,568	Aproximadamente normal
2019	11	7,30	64,67	4,16924587	0,24464446	-0,691	Aproximadamente normal
2019	12	4,20	63,98	4,15849238	0,2301493	-0,738	Aproximadamente normal
2020	1	11,10	64,46	4,16601902	0,24023856	-0,706	Aproximadamente normal
2020	2	4,20	64,63	4,16860133	0,24376058	-0,694	Aproximadamente normal
2020	3	7,50	65,23	4,17797059	0,25679557	-0,653	Aproximadamente normal
2020	4	22,10	64,83	4,17169133	0,24801533	-0,681	Aproximadamente normal
2020	5	213,80	69,64	4,24336305	0,35808323	-0,364	Aproximadamente normal
2020	6	69,80	65,35	4,17975744	0,25932669	-0,645	Aproximadamente normal
2020	7	50,20	65,37	4,18001244	0,25968907	-0,644	Aproximadamente normal
2020	8	94,40	67,44	4,21126303	0,30623446	-0,507	Aproximadamente normal
2020	9	186,30	73,59	4,29853179	0,45448755	-0,114	Aproximadamente normal
2020	10	164,10	69,58	4,24252508	0,35668338	-0,367	Aproximadamente normal
2020	11	240,10	88,98	4,48844909	0,78220432	0,780	Aproximadamente normal
2020	12	4,70	89,03	4,48891723	0,78287356	0,782	Aproximadamente normal
2020		240,10	88,98	4,48844909	0,78220432	0,780	

Promedio	76,64
suma(Ln)	936,4888132
A	0,023534251
a	21,41101005
b	3,579580531
n	217

-5	Extremadamente seco
-2	Extremadamente seco
-1,99	Severamente seco
-1,5	Severamente seco
-1,49	Moderadamente seco
-1	Moderadamente seco
-0,99	Aproximadamente normal
0	Aproximadamente normal
0,99	Aproximadamente normal
1	Moderadamente húmedo
1,49	Moderadamente húmedo
1,5	Muy húmedo
1,99	Muy húmedo
2	extremadamente húmedo

Anexo 6.3

Mapa de Distribución de Sequía de Nicaragua (2019)

Fuente: (TAIWAN ICDF et al., 2019)